Saxon Falls Hydroelectric Project FERC Project No. 2610

Superior Falls Hydroelectric Project FERC Project No. 2587

Applications for a Subsequent License for a Minor Water Power Project Less than 1.5 Megawatts and A New License for a Major Water Power Project Less than 5 Megawatts

Prepared for

Northern States Power Company a Wisconsin Corporation

meadhunt.com

Volume 3 of 4 Appendices

July 2022

© Copyright 2022 NSPW

Volume 3 of 4 Appendices

Appendix

A-1	Saxon Falls Project Location
A-2	Saxon Falls Project Facilities
A-3	Saxon Falls One-Line Diagram of Electrical Circuits
A-4	Saxon Falls Flow Duration Curves and Exceedance Table
A-5	Superior Falls Project Location
A-6	Superior Falls Project Facilities
A-7	Superior Falls One-Line Diagram of Electrical Circuits
A-8	Superior Falls Flow Duration Curves and Exceedance Table
E-9	Regulated Dams on the Montreal River and West Fork of the Montreal River
E-10	Orthophotographic Map of Saxon Falls Project Area
E-11	Orthophotographic Map of Superior Falls Project Area
E-12	Topographic Map of Saxon Falls Project Area
E-13	Topographic Map of Superior Falls Project Area
E-14	Saxon Falls Project Soil Report
E-15	Superior Falls Project Soil Report
E-16	Saxon Falls and Superior Falls Archaeological Survey Report (Privileged)
E-17	2021 Superior Falls Annual Erosion Survey & Wood Duck Nest Box Inspection
E-18	Saxon Falls and Superior Falls ATIS Study Report
E-19	Major Land Uses in Saxon Falls Project Vicinity
E-20	Major Land Uses in the Superior Falls Project Vicinity

Appendices (cont'd):

 E-22 Chapter NR 102 Water Quality Standards E-23 Michigan Part 4 Rules, Water Quality Standards E-24 Saxon Falls and Superior Falls Water Quality Study Report E-25 Saxon Falls Bathymetric Map E-26 Superior Falls Bathymetric Map E-27 Historic WDNR Fish Mapper Data E-28 Montreal River Fish Stocking Data E-29 2021 Saxon Falls and Superior Falls Fisheries Study Report E-30 Saxon Falls and Superior Falls Intake Velocity Calculations E-31 Chippewa River Fish Protection Study Report E-32 Saxon Falls and Superior Falls Freshwater Mussel Study Report E-33 Saxon Falls Macroinvertebrate Taxa Sampled and Relative Abundance E-34 WDNR Superior Falls Macroinvertebrate Sampling Data E-35 Ecological Landscapes of Wisconsin Map E-36 Superior Falls IPaC Official Species List E-38 Superior Falls NHI Review (Privileged) E-40 Superior Falls NHI Review (Privileged) E-41 BITP-BITA for Wisconsin Cave Bats E-42 Iron County Outdoor Recreation Plan 	E-21	Flood Zone Maps
 Hichigan Part 4 Rules, Water Quality Standards Saxon Falls and Superior Falls Water Quality Study Report Saxon Falls Bathymetric Map Superior Falls Bathymetric Map Historic WDNR Fish Mapper Data Montreal River Fish Stocking Data 2021 Saxon Falls and Superior Falls Fisheries Study Report Saxon Falls and Superior Falls Intake Velocity Calculations Chippewa River Fish Protection Study Report Saxon Falls and Superior Falls Freshwater Mussel Study Report Saxon Falls Macroinvertebrate Taxa Sampled and Relative Abundance WDNR Superior Falls Macroinvertebrate Sampling Data Ecological Landscapes of Wisconsin Map Superior Falls IPaC Official Species List Saxon Falls NHI Review (Privileged) Superior Falls NHI Review (Privileged) Fall BITP-BITA for Wisconsin Cave Bats Fall Iron County Outdoor Recreation Plan 	E-22	Chapter NR 102 Water Quality Standards
 E-24 Saxon Falls and Superior Falls Water Quality Study Report E-25 Saxon Falls Bathymetric Map E-26 Superior Falls Bathymetric Map E-27 Historic WDNR Fish Mapper Data E-28 Montreal River Fish Stocking Data E-29 2021 Saxon Falls and Superior Falls Fisheries Study Report E-30 Saxon Falls and Superior Falls Intake Velocity Calculations E-31 Chippewa River Fish Protection Study Report E-32 Saxon Falls and Superior Falls Freshwater Mussel Study Report E-33 Saxon Falls Macroinvertebrate Taxa Sampled and Relative Abundance E-34 WDNR Superior Falls Macroinvertebrate Sampling Data E-35 Ecological Landscapes of Wisconsin Map E-37 Saxon Falls IPaC Official Species List E-38 Superior Falls IPaC Official Species List E-39 Saxon Falls NHI Review (Privileged) E-40 BITP-BITA for Wisconsin Cave Bats E-42 Iron County Outdoor Recreation Plan 	E-23	Michigan Part 4 Rules, Water Quality Standards
 E-25 Saxon Falls Bathymetric Map E-26 Superior Falls Bathymetric Map E-27 Historic WDNR Fish Mapper Data E-28 Montreal River Fish Stocking Data E-29 2021 Saxon Falls and Superior Falls Fisheries Study Report E-30 Saxon Falls and Superior Falls Intake Velocity Calculations E-31 Chippewa River Fish Protection Study Report E-32 Saxon Falls and Superior Falls Freshwater Mussel Study Report E-33 Saxon Falls Macroinvertebrate Taxa Sampled and Relative Abundance E-34 WDNR Superior Falls Macroinvertebrate Sampling Data E-35 Ecological Landscapes of Wisconsin Map E-36 Superior Falls I'mber Inventory Map E-37 Saxon Falls IPaC Official Species List E-38 Superior Falls IPaC Official Species List E-39 Saxon Falls NHI Review (Privileged) E-40 BITP-BITA for Wisconsin Cave Bats E-42 Iron County Outdoor Recreation Plan 	E-24	Saxon Falls and Superior Falls Water Quality Study Report
 E-26 Superior Falls Bathymetric Map E-27 Historic WDNR Fish Mapper Data E-28 Montreal River Fish Stocking Data E-29 2021 Saxon Falls and Superior Falls Fisheries Study Report E-30 Saxon Falls and Superior Falls Intake Velocity Calculations E-31 Chippewa River Fish Protection Study Report E-32 Saxon Falls and Superior Falls Freshwater Mussel Study Report E-33 Saxon Falls Macroinvertebrate Taxa Sampled and Relative Abundance E-34 WDNR Superior Falls Macroinvertebrate Sampling Data E-35 Ecological Landscapes of Wisconsin Map E-36 Superior Falls IPaC Official Species List E-38 Superior Falls IPaC Official Species List E-39 Saxon Falls NHI Review (Privileged) E-40 Superior Falls NHI Review (Privileged) E-41 BITP-BITA for Wisconsin Cave Bats E-42 Iron County Outdoor Recreation Plan 	E-25	Saxon Falls Bathymetric Map
 Historic WDNR Fish Mapper Data Montreal River Fish Stocking Data 2021 Saxon Falls and Superior Falls Fisheries Study Report Saxon Falls and Superior Falls Intake Velocity Calculations Chippewa River Fish Protection Study Report Saxon Falls and Superior Falls Freshwater Mussel Study Report Saxon Falls Macroinvertebrate Taxa Sampled and Relative Abundance WDNR Superior Falls Macroinvertebrate Sampling Data Ecological Landscapes of Wisconsin Map Superior Falls IPaC Official Species List Superior Falls NHI Review (Privileged) Superior Falls NHI Review (Privileged) E-40 BITP-BITA for Wisconsin Cave Bats E-42 Iron County Outdoor Recreation Plan 	E-26	Superior Falls Bathymetric Map
 E-28 Montreal River Fish Stocking Data E-29 2021 Saxon Falls and Superior Falls Fisheries Study Report E-30 Saxon Falls and Superior Falls Intake Velocity Calculations E-31 Chippewa River Fish Protection Study Report E-32 Saxon Falls and Superior Falls Freshwater Mussel Study Report E-33 Saxon Falls Macroinvertebrate Taxa Sampled and Relative Abundance E-34 WDNR Superior Falls Macroinvertebrate Sampling Data E-35 Ecological Landscapes of Wisconsin Map E-36 Superior Falls IPaC Official Species List E-38 Superior Falls IPaC Official Species List E-39 Saxon Falls NHI Review (Privileged) E-40 Superior Falls NHI Review (Privileged) E-41 BITP-BITA for Wisconsin Cave Bats E-42 Iron County Outdoor Recreation Plan 	E-27	Historic WDNR Fish Mapper Data
 E-29 2021 Saxon Falls and Superior Falls Fisheries Study Report E-30 Saxon Falls and Superior Falls Intake Velocity Calculations E-31 Chippewa River Fish Protection Study Report E-32 Saxon Falls and Superior Falls Freshwater Mussel Study Report E-33 Saxon Falls Macroinvertebrate Taxa Sampled and Relative Abundance E-34 WDNR Superior Falls Macroinvertebrate Sampling Data E-35 Ecological Landscapes of Wisconsin Map E-36 Superior Falls Timber Inventory Map E-37 Saxon Falls IPaC Official Species List E-38 Superior Falls IPaC Official Species List E-39 Saxon Falls NHI Review (Privileged) E-40 BITP-BITA for Wisconsin Cave Bats E-42 Iron County Outdoor Recreation Plan 	E-28	Montreal River Fish Stocking Data
 E-30 Saxon Falls and Superior Falls Intake Velocity Calculations E-31 Chippewa River Fish Protection Study Report E-32 Saxon Falls and Superior Falls Freshwater Mussel Study Report E-33 Saxon Falls Macroinvertebrate Taxa Sampled and Relative Abundance E-34 WDNR Superior Falls Macroinvertebrate Sampling Data E-35 Ecological Landscapes of Wisconsin Map E-36 Superior Falls Timber Inventory Map E-37 Saxon Falls IPaC Official Species List E-38 Superior Falls NHI Review (Privileged) E-40 Superior Falls NHI Review (Privileged) E-41 BITP-BITA for Wisconsin Cave Bats E-42 Iron County Outdoor Recreation Plan 	E-29	2021 Saxon Falls and Superior Falls Fisheries Study Report
 E-31 Chippewa River Fish Protection Study Report E-32 Saxon Falls and Superior Falls Freshwater Mussel Study Report E-33 Saxon Falls Macroinvertebrate Taxa Sampled and Relative Abundance E-34 WDNR Superior Falls Macroinvertebrate Sampling Data E-35 Ecological Landscapes of Wisconsin Map E-36 Superior Falls Timber Inventory Map E-37 Saxon Falls IPaC Official Species List E-38 Superior Falls NHI Review (Privileged) E-40 Superior Falls NHI Review (Privileged) E-41 BITP-BITA for Wisconsin Cave Bats E-42 Iron County Outdoor Recreation Plan 	E-30	Saxon Falls and Superior Falls Intake Velocity Calculations
 E-32 Saxon Falls and Superior Falls Freshwater Mussel Study Report E-33 Saxon Falls Macroinvertebrate Taxa Sampled and Relative Abundance E-34 WDNR Superior Falls Macroinvertebrate Sampling Data E-35 Ecological Landscapes of Wisconsin Map E-36 Superior Falls Timber Inventory Map E-37 Saxon Falls IPaC Official Species List E-38 Superior Falls IPaC Official Species List E-39 Saxon Falls NHI Review (Privileged) E-40 Superior Falls NHI Review (Privileged) E-41 BITP-BITA for Wisconsin Cave Bats E-42 Iron County Outdoor Recreation Plan 	E-31	Chippewa River Fish Protection Study Report
 E-33 Saxon Falls Macroinvertebrate Taxa Sampled and Relative Abundance E-34 WDNR Superior Falls Macroinvertebrate Sampling Data E-35 Ecological Landscapes of Wisconsin Map E-36 Superior Falls Timber Inventory Map E-37 Saxon Falls IPaC Official Species List E-38 Superior Falls IPaC Official Species List E-39 Saxon Falls NHI Review (Privileged) E-40 Superior Falls NHI Review (Privileged) E-41 BITP-BITA for Wisconsin Cave Bats E-42 Iron County Outdoor Recreation Plan 	E-32	Saxon Falls and Superior Falls Freshwater Mussel Study Report
 E-34 WDNR Superior Falls Macroinvertebrate Sampling Data E-35 Ecological Landscapes of Wisconsin Map E-36 Superior Falls Timber Inventory Map E-37 Saxon Falls IPaC Official Species List E-38 Superior Falls IPaC Official Species List E-39 Saxon Falls NHI Review (Privileged) E-40 Superior Falls NHI Review (Privileged) E-41 BITP-BITA for Wisconsin Cave Bats E-42 Iron County Outdoor Recreation Plan 	E-33	Saxon Falls Macroinvertebrate Taxa Sampled and Relative Abundance
 E-35 Ecological Landscapes of Wisconsin Map E-36 Superior Falls Timber Inventory Map E-37 Saxon Falls IPaC Official Species List E-38 Superior Falls IPaC Official Species List E-39 Saxon Falls NHI Review (Privileged) E-40 Superior Falls NHI Review (Privileged) E-41 BITP-BITA for Wisconsin Cave Bats E-42 Iron County Outdoor Recreation Plan 	E-34	WDNR Superior Falls Macroinvertebrate Sampling Data
 E-36 Superior Falls Timber Inventory Map E-37 Saxon Falls IPaC Official Species List E-38 Superior Falls IPaC Official Species List E-39 Saxon Falls NHI Review (Privileged) E-40 Superior Falls NHI Review (Privileged) E-41 BITP-BITA for Wisconsin Cave Bats E-42 Iron County Outdoor Recreation Plan 	E-35	Ecological Landscapes of Wisconsin Map
 E-37 Saxon Falls IPaC Official Species List E-38 Superior Falls IPaC Official Species List E-39 Saxon Falls NHI Review (Privileged) E-40 Superior Falls NHI Review (Privileged) E-41 BITP-BITA for Wisconsin Cave Bats E-42 Iron County Outdoor Recreation Plan 	E-36	Superior Falls Timber Inventory Map
 E-38 Superior Falls IPaC Official Species List E-39 Saxon Falls NHI Review (Privileged) E-40 Superior Falls NHI Review (Privileged) E-41 BITP-BITA for Wisconsin Cave Bats E-42 Iron County Outdoor Recreation Plan 	E-37	Saxon Falls IPaC Official Species List
 E-39 Saxon Falls NHI Review (Privileged) E-40 Superior Falls NHI Review (Privileged) E-41 BITP-BITA for Wisconsin Cave Bats E-42 Iron County Outdoor Recreation Plan 	E-38	Superior Falls IPaC Official Species List
 E-40 Superior Falls NHI Review (Privileged) E-41 BITP-BITA for Wisconsin Cave Bats E-42 Iron County Outdoor Recreation Plan 	E-39	Saxon Falls NHI Review (Privileged)
E-41BITP-BITA for Wisconsin Cave BatsE-42Iron County Outdoor Recreation Plan	E-40	Superior Falls NHI Review (Privileged)
E-42 Iron County Outdoor Recreation Plan	E-41	BITP-BITA for Wisconsin Cave Bats
	E-42	Iron County Outdoor Recreation Plan

Appendices (cont'd):

- E-43 Gogebic County Recreation Plan
- E-44 Wisconsin SCORP
- E-45 Michigan SCORP
- E-46 Saxon Falls and Superior Falls Recreation Inventory and Condition Assessment Forms
- E-47 Saxon Falls and Superior Falls Recreation Study Photos
- E-48 Saxon Falls and Superior Falls Recreation Questionnaires
- E-49 Whitewater Study Protocol
- E-50 Whitewater Study Survey Forms
- E-51 Saxon Falls Project Land and Inundated Area Maps
- E-52 Superior Falls Project Land and Inundated Area Maps
- E-53 Wetlands within the Saxon Falls Proposed and Current Project Boundary
- E-54 Wetlands Within the Superior Falls Proposed and Current Project Boundary
- E-55 WDNR's Forest Management Guidelines, Chapter 4 Visual Quality
- E-56 WDNR's Forest Management Guidelines, Chapter 5 Riparian Areas and Wetlands

APPENDIX A-1 Saxon Falls Project Location

APPENDIX A-2 Saxon Falls Project Facilities

APPENDIX A-3 Saxon Falls Flow Duration Curves

Percent of Time	January	February	March	April	May	June	July	August	September	October	November	December
95	80	75	89	160	120	100	70	50	42	53	82	77
90	87	85	95	200	171	125	95	60	50	60	94	83
85	95	89	110	226	185	140	100	75	55	66	100	90
80	101	90	135	269	195	154	106	85	60	71	106	99
75	108	95	149	325	200	165	115	95	65	80	115	110
70	120	101	161	395	205	172	125	100	70	89	125	123
65	137	113	173	440	215	180	140	105	80	100	133	131
60	145	140	185	495	225	190	155	110	88	112	148	148
55	155	150	185	545	235	198	165	115	95	125	166	155
50	161	161	198	600	260	200	183	120	100	140	185	162
45	167	170	215	670	299	210	190	135	110	160	195	170
40	175	180	240	785	335	220	205	150	120	176	200	184
35	180	185	280	870	420	225	215	165	135	195	210	185
30	185	187	350	995	470	240	225	185	149	220	225	195
25	185	195	440	1180	570	260	235	205	180	240	250	205
20	195	195	510	1350	650	305	260	220	200	290	285	220
15	205	200	660	1600	805	400	286	235	232	340	326	235
10	220	230	870	2080	1120	500	375	265	255	420	415	300

Saxon Falls Flow Duration for USGS Gage 04029990 (Period of Record 1986 - 2017)

APPENDIX A-4 Saxon Falls One-line Diagram of Electrical Circuits

APPENDIX A-5 Superior Falls Project Location

APPENDIX A-6 Superior Falls Project Facilities

APPENDIX A-7 Superior Falls Flow Duration Curves

Percent of Time	January	February	March	April	May	June	July	August	September	October	November	December
95	81	76	90	161	121	101	71	50	42	53	83	78
90	88	86	96	202	172	126	96	60	50	60	95	84
85	96	90	111	228	186	141	101	76	55	67	101	91
80	102	91	136	271	196	155	107	86	60	72	107	100
75	109	96	150	327	202	166	116	96	65	81	116	111
70	121	102	162	398	207	173	126	101	71	90	126	124
65	138	114	174	443	217	181	141	106	81	101	134	132
60	146	141	186	499	227	191	156	111	89	113	149	149
55	156	151	186	549	237	200	166	116	96	126	167	156
50	162	162	200	605	262	202	184	121	101	141	186	163
45	168	171	217	675	301	212	191	136	111	161	196	171
40	176	181	242	791	338	222	207	151	121	177	202	185
35	181	186	282	877	423	227	217	166	136	196	212	186
30	186	188	353	1003	474	242	227	186	150	222	227	196
25	186	196	443	1189	574	262	237	207	181	242	252	207
20	196	196	514	1360	655	307	262	222	202	292	287	222
15	207	202	665	1612	811	403	288	237	234	343	328	237
10	222	232	877	2096	1129	504	378	267	257	423	418	302

Superior Falls Flow Duration for USGS Gage 04029990 (Period of Record 1986 - 2017)

APPENDIX A-8 Superior Falls One-line Diagram of Electrical Circuits

APPENDIX E-9 Regulated Dams on the Montreal River and West Fork of the Montreal River

APPENDIX E-10 Orthophotographic Map of Saxon Falls Project Area

APPENDIX E-11 Orthophotographic Map of Superior Falls Project Area

⊘ Xcel Energy®	
Mead &Hunt	

Proposed Project Boundary State Boundary

0 250 500 Feet

Orthophotographic Map

FERC No. 2587

APPENDIX E-12 Topographic Map of Saxon Falls Project Area

APPENDIX E-13 Topographic Map of Superior Falls Project Area

State Boundary

ſ

Mead

0

250

500

Feet

FERC No. 2587

APPENDIX E-14 Saxon Falls Project Soil Report

USDA Natural Resources

Conservation Service

Web Soil Survey National Cooperative Soil Survey

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
230B	Moquah-Arnheim complex, 0 to 3 percent slopes, frequently flooded	15.2	4.3%
369F	Michigamme-Schweitzer- Peshekee-Rock outcrop complex, 55 to 75 percent slopes, very stony	30.0	8.4%
551B	Gogebic-Dishno complex, 1 to 6 percent slopes, rocky, very stony	6.8	1.9%
625B	Fence very fine sandy loam, 0 to 6 percent slopes	41.9	11.7%
625C	Fence very fine sandy loam, 6 to 18 percent slopes	16.3	4.6%
626E	Sporley very fine sandy loam, 35 to 55 percent slopes	3.2	0.9%
W	Water	14.4	4.0%
Subtotals for Soil Survey Are	ea	127.9	35.7%
Totals for Area of Interest		357.7	100.0%

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
204D	Denomie silt loam, 15 to 30 percent slopes	5.8	1.6%
242B	Fence silt loam, lake terrace, 0 to 6 percent slopes	6.3	1.8%
375A	Robago fine sandy loam, lake terrace, 0 to 3 percent slopes	0.0	0.0%
388B	Pelkie, occasionally flooded- Dechamps, frequently flooded complex, 0 to 4 percent slopes	3.9	1.1%
444B	Gichigami-Oronto complex, 0 to 6 percent slopes	65.7	18.4%
549A	Pickford-Oronto complex, 0 to 3 percent slopes	0.6	0.2%
3243A	Spear silt loam, lake terrace, 0 to 3 percent slopes	0.1	0.0%
5285F	Rockland-Arnheim, frequently flooded complex, 0 to 70 percent slopes	6.1	1.7%
5369F	Michigamme-Schweitzer- Peshekee-Rock outcrop complex, 55 to 75 percent slopes, very stony	61.2	17.1%

USDA

Г

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
5429C	Gogebic-Peshekee complex, 6 to 18 percent slopes, very stony, very rocky	1.6	0.5%
5504A	Moquah-Arnheim complex, 0 to 3 percent slopes, frequently flooded	36.7	10.3%
W	Water	41.9	11.7%
Subtotals for Soil Survey Are	a	229.9	64.3%
Totals for Area of Interest		357.7	100.0%

Gogebic County, Michigan								
Map symbol and soil name	Pct. of map unit	Slope length (ft)	Hydrologic group	Kf	T factor	Repres % Sand	sentative % Silt	value % Clay
230B—Moquah-Arnheim complex, 0 to 3 percent slopes, frequently flooded								
Moquah, frequently flooded	55	295	А	.28	5	46.6	44.4	9.0
Arnheim, frequently flooded	30	426	B/D	.37	5	30.0	60.0	10.0
369F—Michigamme- Schweitzer-Peshekee-Rock outcrop complex, 55 to 75 percent slopes, very stony								
Michigamme, very stony	30	98	С	—	2	5.0	90.0	5.0
Schweitzer, very stony	25	98	С	.37	3	55.0	37.0	8.0
Peshekee, very stony	20	98	D	_	1	5.0	90.0	5.0
Rock outcrop	15	_	_	_	-	_	_	_
551B—Gogebic-Dishno complex, 1 to 6 percent slopes, rocky, very stony								
Gogebic, very stony	65	295	D	—	4	_	—	_
Dishno	30	246	С	—	3	—	—	_
625B—Fence very fine sandy loam, 0 to 6 percent slopes								
Fence	95	295	B/D	.49	5	53.9	41.1	5.0
625C—Fence very fine sandy loam, 6 to 18 percent slopes								
Fence	98	148	B/D	.49	5	53.9	41.1	5.0
626E—Sporley very fine sandy loam, 35 to 55 percent slopes								
Sporley	90	148	С	.37	5	53.9	41.1	5.0
W—Water								
Water	100	_	_	_	_	_	_	_
Iron County, Wisconsin						I		
Map symbol and soil name	Pct. of	Slope	Hydrologic group	Kf	T factor	Repre	sentative	value
	map unit	length (ft)				% Sand	% Silt	% Clay
204D—Denomie silt loam, 15 to 30 percent slopes								
Denomie	90	79	С	.37	5	34.3	51.7	14.0
242B—Fence silt loam, lake terrace, 0 to 6 percent slopes								
Fence	85	200	С	.49	5	14.2	74.8	11.0

Web Soil Survey

Iron County, Wisconsin								
275A Debage fine condy								
loam, lake terrace, 0 to 3 percent slopes								
Robago	85	249	B/D	_	5	0.0	0.0	0.0
388B—Pelkie, occasionally flooded-Dechamps, frequently flooded complex, 0 to 4 percent slopes								
Pelkie	50	249	А	.37	5	83.0	9.0	8.0
Dechamps	30	249	A/D	.17	5	71.3	17.7	11.0
444B—Gichigami-Oronto complex, 0 to 6 percent slopes								
Gichigami	70	200	B/D	.32	5	34.3	51.7	14.0
Oronto	25	249	C/D	.28	5	17.5	51.5	31.0
549A—Pickford-Oronto complex, 0 to 3 percent slopes								
Pickford	60	249	D	.28	5	16.9	48.1	35.0
Oronto	30	249	C/D	.28	5	17.5	51.5	31.0
3243A—Spear silt loam, lake terrace, 0 to 3 percent slopes								
Spear	85	249	C/D	.49	5	30.1	57.4	12.5
5285F—Rockland-Arnheim, frequently flooded complex, 0 to 70 percent slopes								
Rockland	70	98	С	_	5	_	-	_
Arnheim	15	426	B/D	.43	5	36.0	54.0	10.0
5369F—Michigamme- Schweitzer-Peshekee-Rock outcrop complex, 55 to 75 percent slopes, very stony								
Michigamme, very stony	30	98	С	-	2	5.0	90.0	5.0
Schweitzer, very stony	25	98	С	.37	3	55.0	37.0	8.0
Peshekee, very stony	20	98	D	_	1	5.0	90.0	5.0
Rock outcrop	15	_	_	_	_	_	-	—
5429C—Gogebic-Peshekee complex, 6 to 18 percent slopes, very stony, very rocky								
Gogebic, very stony	79	148	D	-	4	_	_	
Peshekee	15	98	D	_	1	—	_	_

9/12/2019

Web Soil Survey

Iron County, Wisconsin									
5504A—Moquah-Arnheim complex, 0 to 3 percent slopes, frequently flooded									
Moquah, frequently flooded	55	295	А	.28	5	46.6	44.4	9.0	
Arnheim, frequently flooded	30	426	B/D	.37	5	30.0	60.0	10.0	
Description — RUSLE2 Related Attrib	outes								
RUSLE2 Related Attributes									
This report summarizes those soil attribute report includes the map unit symbol, the component include the hydrologic soil gric clay in the mineral surface horizon. Miss	utes used by the component n oup, erosion faing surface dat	ne Revised U ame, and the actors Kf for ta may indica	niversal Soil Loss Equa e percent of the compo the surface horizon, e ate the presence of an	ation Version 2 (R onent in the map rosion factor T, a organic surface I	RUSLE2) for th unit. Soil pro nd the repres ayer	he map units in perty data for e entative percen	the selected a ach map unit tage of sand,	area. The silt, and	

FOIA | Accessibility Statement | Privacy Policy | Non-Discrimination Statement | Information Quality | USA.gov | White House

APPENDIX E-15 Superior Falls Project Soil Report

Conservation Service

Web Soil Survey National Cooperative Soil Survey

MAP LEGEND		EGEND	MAP INFORMATION
Area of Interest	(AOI) a of Interest (AOI)	Spoil Area	The soil surveys that comprise your AOI were mapped at ranging from 1:12,000 to 1:24,000.
Soils Soil	Map Unit Polygons	Very Stony Spot Wet Spot	Please rely on the bar scale on each map sheet for map measurements.
Soil	Map Unit Lines Map Unit Points	 Other Special Line Features 	Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857)
Special Point	Features vout row Pit r Spot	Water Features Streams and Canals Transportation H Rails	Maps from the Web Soil Survey are based on the Web Me projection, which preserves direction and shape but distor distance and area. A projection that preserves area, such Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.
♦ Clos ♦ Grave	sed Depression vel Pit	 Interstate Highways US Routes 	This product is generated from the USDA-NRCS certified of the version date(s) listed below.
🔝 Grav	velly Spot dfill	Major Roads Local Roads	Soil Survey Area: Gogebic County, Michigan Survey Area Data: Version 10, Sep 11, 2018
🗎 Lava	a Flow sh or swamp	Background Aerial Photography	Son Survey Area: fron County, Wisconsin Survey Area Data: Version 14, Sep 11, 2018 Your area of interest (AOI) includes more than one soil su
 Mine Misc Pere Rocl 	e or Quarry cellaneous Water ennial Water k Outcrop		area. These survey areas may have been mapped at diffe scales, with a different land use in mind, at different times different levels of detail. This may result in map unit symb properties, and interpretations that do not completely agre across soil survey area boundaries.
+ Salir	ne Spot dy Spot		Soil map units are labeled (as space allows) for map scale 1:50,000 or larger.
Seve	erely Eroded Spot		Date(s) aerial images were photographed: Dec 31, 2009– 27, 2016
Sink Sink	chole e or Slip ic Spot		The orthophoto or other base map on which the soil lines compiled and digitized probably differs from the backgroun imagery displayed on these maps. As a result, some mino

Natural Resources

USDA

Map Unit Legend

	1		
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
230B	Moquah-Arnheim complex, 0 to 3 percent slopes, frequently flooded	76.7	8.4%
280B	Flintsteel loam, 1 to 8 percent slopes	195.6	21.3%
284	Aquents, ponded-Gull Point, frequently flooded, complex, 0 to 1 percent slopes	8.5	0.9%
285F	Rockland-Arnheim, frequently flooded, complex, 0 to 70 percent slopes	114.9	12.5%
W	Water	17.8	1.9%
Subtotals for Soil Survey Are	a	413.5	45.0%
Totals for Area of Interest		917.9	100.0%

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
5A	Arnheim mucky silt loam, 0 to 1 percent slopes, frequently flooded	39.3	4.3%
204C	Denomie silt loam, 6 to 15 percent slopes	29.6	3.2%
388B	Pelkie, occasionally flooded- Dechamps, frequently flooded complex, 0 to 4 percent slopes	49.4	5.4%
444B	Gichigami-Oronto complex, 0 to 6 percent slopes	164.0	17.9%
5285F	Rockland-Arnheim, frequently flooded complex, 0 to 70 percent slopes	63.1	6.9%
5429C	Gogebic-Peshekee complex, 6 to 18 percent slopes, very stony, very rocky	1.9	0.2%
5429D	Gogebic-Peshekee complex, 18 to 35 percent slopes, very stony, very rocky	2.9	0.3%
5504A	Moquah-Arnheim complex, 0 to 3 percent slopes, frequently flooded	131.1	14.3%
W	Water	14.5	1.6%
Subtotals for Soil Survey Ar	ea	495.9	54.0%
Totals for Area of Interest		917.9	100.0%

Г

1

liopia) cai								
Gogebic County, Michigan								
Map symbol and soil name	Pct. of Slope H	Hydrologic group	Kf	T factor	Representative value			
	map unit	length (ft)				% Sand	% Silt	% Cla
230B—Moquah-Arnheim complex, 0 to 3 percent slopes, frequently flooded								
Moquah, frequently flooded	55	295	Α	.28	5	46.6	44.4	9
Arnheim, frequently flooded	30	426	B/D	.37	5	30.0	60.0	10
280B—Flintsteel loam, 1 to 8 percent slopes								
Flintsteel	85	295	C/D	_	3	5.0	90.0	5
285F—Rockland-Arnheim, frequently flooded, complex, 0 to 70 percent slopes								
Rockland	70	98	С	—	5	_	—	
Arnheim	15	426	B/D	.43	5	36.0	54.0	10
W—Water								
Water	100	_	_	—	_	_	_	
Iron County, Wisconsin								
Map symbol and soil name	Pct. of map	Slope length	Hydrologic group	Kf	T factor	Repres	sentative	value
	unit	(ft)				% Sand	% Silt	% Cla
5A—Arnheim mucky silt loam, 0 to 1 percent slopes, frequently flooded								
Arnheim	85	249	B/D	.32	5	30.1	54.9	15
204C—Denomie silt loam, 6 to 15 percent slopes								
Denomie	85	151	С	.37	5	34.3	51.7	14
204D—Denomie silt loam, 15 to 30 percent slopes								
Denomie	90	79	С	.37	5	34.3	51.7	14
388B—Pelkie, occasionally flooded-Dechamps, frequently flooded complex, 0 to 4 percent slopes								
Pelkie	50	249	А	.37	5	83.0	9.0	8

Web Soil Survey

Description — RUSLE2 Related Attrib	utes							
Arnheim, frequently flooded	30	426	B/D	.37	5	30.0	60.0	10.0
Moquah, frequently flooded	55	295	А	.28	5	46.6	44.4	9.0
5504A—Moquah-Arnheim complex, 0 to 3 percent slopes, frequently flooded								
Arnheim	15	426	B/D	.43	5	36.0	54.0	10.0
Rockland	70	98	С	—	5	_	—	
5285F—Rockland-Arnheim, frequently flooded complex, 0 to 70 percent slopes								
Oronto	25	249	C/D	.28	5	17.5	51.5	31.0
Gichigami	70	200	B/D	.32	5	34.3	51.7	14.0
444B—Gichigami-Oronto complex, 0 to 6 percent slopes								

report includes the map unit symbol, the component name, and the percent of the component in the map unit. Soil property data for each map unit component include the hydrologic soil group, erosion factors Kf for the surface horizon, erosion factor T, and the representative percentage of sand, silt, and clay in the mineral surface horizon. Missing surface data may indicate the presence of an organic surface layer.

FOIA | Accessibility Statement | Privacy Policy | Non-Discrimination Statement | Information Quality | USA.gov | White House

APPENDIX E-16 Saxon Falls and Superior Falls Archaeological Survey Report (Public)

This appendix has been e-filed separately as privileged information.

APPENDIX E-17 2021 Superior Falls Annual Erosion Survey & Wood Duck Nest Box Inspection

November 12, 2021

Ms. Elle Gulotty

VIA Electronic Mail

PO Box 8

1414 West Hamilton Avenue

Eau Claire, WI 54702-0008

Michigan Dept. of Natural Resources Marquette Service Center 1990 US-41 South Marquette, MI 49855

Ms. Cheryl Laatsch Wisconsin Dept. of Natural Resources 502 E. Mill Street Beaver Dam, WI 54880

Subject: Annual Shoreline Erosion Survey & Wood Duck Nest Box Inspection Superior Falls Hydro (FERC Project #2587)

Dear Ms. Gulotty and Ms. Laatsch:

This transmittal summarizes the results of the shoreline erosion survey and wood duck nest monitoring conducted at Superior Falls Flowage on August 16-17, 2021. Pursuant to Article 401, the licensee is required to monitor the shoreline for the presence of erosion. The survey was performed in conjunction with the wood duck nest monitoring (Article 410) and the invasive species monitoring (Article 409). The invasive species report was previously filed under separate cover.

There have been no discernable changes in the extent of the erosion over the last five years. Attachment A includes an aerial photograph of Superior Falls Flowage that depicts the approximate location of the three minor erosion sites. Corresponding photographs of the erosion from this year are included in Attachment B. Note that we do not have photographs of erosion site #2; however, there were no significant changes in the severity of the erosion at this location from the previous year. These erosion sites are the result of significant runoff events rather than from project operations. We will continue to monitor the sites for significant changes.

The wood duck nesting boxes were also inspected at the time of the shoreline erosion survey. Sites A, C and D showed no evidence of nesting while Site B featured a fully developed nest. See Attachment A for an aerial photograph depicting the locations of the nesting sites. Attachment C includes photographs that document the evidence of nesting. Note that predator guards were installed this year per the recommendation of the MDNR.

Should you have any questions regarding our findings, feel free to contact me by telephone at (715) 737-1353 or by e-mail at matthew.j.miller@xcelenergy.com.

Sincerely,

Matthew J. Miller DN: cn=Matthew J. Miller, o=Xcel Energy, ou=Energy Supply, email=matthew.j.miller@xcelenergy.com, c=US

Digitally signed by Matthew J. Miller Date: 2021.11.12 11:42:17 -06'00'

Matthew J. Miller Hydro License Compliance Consultant

Attachments

c: Shawn Puzen, Darrin Johnson – Mead & Hunt (via e-mail) Scott Crotty, Brey Maurer – Xcel Energy (via e-mail) **Project Files**
Attachment A

Aerial Photograph of Superior Falls Flowage with Erosion and Wood Duck Box Nesting Sites

Attachment B

Photographs of Erosion Sites

Attachment C

Photographs of Wood Duck Nesting Boxes

•	a har e se se la casa de la casa de anticipada en la casa de la cas Esta de la casa de la c	an a
		an taona an taon 1966. anna an an 1966. An anna an taonachta
	n an an taon ann an taonachta ann an taonachta an taonachta ann an taonachta ann an taonachta ann an taonachta Ann an taonachta ann an tao Ann an taonachta ann an tao	a ^{da a} na ang Ngang ang ang ang ang ang ang ang ang ang
	n were and the second	· · · · · · · · · · · · · · · · · · ·
	en Antonio en entre en esta esta esta esta esta est	·····

APPENDIX E-18 Saxon Falls and Superior Falls ATIS Study Report

gaiconsultants.com | transforming ideas into reality,

Aquatic and Terrestrial Invasive Species Study Report

Xcel Energy Saxon Falls and Superior Falls Hydroelectric Projects Saxon, Wisconsin GAI Project Number: R210322.00 | FERC Nos. 2610 and 2587 September 2021

Prepared on behalf of: Mead & Hunt 1345 North Road B Green Bay, Wisconsin 54313

Prepared by: GAI Consultants, Inc. 3313 S Packerland Drive, Suite E DePere, Wisconsin 54115

Aquatic and Terrestrial Invasive Species Study Report

Xcel Energy Saxon Falls and Superior Falls Hydroelectric Projects Saxon, Wisconsin

> GAI Project Number: R210322.00 FERC #s: 2610 and 2587

> > September 2021

Prepared for: Mead & Hunt 1345 North Road B Green Bay, WI 54313

Prepared by: GAI Consultants, Inc. 3313 S Packerland Drive, Suite E DePere, Wisconsin 54115

Report Authors:

Laura

Digitally signed by Laura Sass DN: cn=Laura Sass, o=GAI Consultants, Inc., ou=Oil & Gas MW SW, email=I.sass@gaiconsultants.com, c=US Date: 2022.05.02 09:36:20 -05'00'

Laura Sass Senior Project Environmental Specialist

Mary Rohde Digitally signed by Mary Rohde DN: cn=Mary Rohde, o, ou, email=m:rohde@gaiconsultants.com, c=US

Date: 2022.05.02 09:13:29 -05'00'

Mary Rohde Senior Environmental Manager / Associate

Table of Contents

1.0 Project Overview								
2.0	Introduction							
3.0	Metho 3.1 3.2	odology Upstr 3.1.1 3.1.2 3.1.3 Terre 3.2.1 3.2.2	eam and Downstream Inundated Areas Aquatic Plant Survey Water Samples Sediment Samples strial Upland Areas Upland Shorelines Upland Terrestrial Areas	3 4 4 5 5 5				
4.0	Result 4.1 4.2 4.3 4.4	ts and Aqua 4.1.1 4.1.2 4.1.3 Wate Sedir Terre 4.4.1 4.4.2 4.4.3 4.4.4	Discussion tic Plant Survey June Survey August Survey Overall Aquatic Plant Survey Analysis and Observations r Samples nent Samples strial Upland Areas Upland Shoreline Survey – Saxon Upland Terrestrial Area – Meander Survey of Saxon Upland Shoreline Survey – Superior Upland Terrestrial Area – Meander Survey of Superior	6 6 7 9 .10 .10 .11 .11 .11				
5.0 Table Table Table Table Table	Refere 2 3 4 5	ences .	Daubenmire Classification Scheme Cover Ranking System Aquatic Plant Species Abundance in the Montreal River Overall Saxon Falls and Superior Falls Hydroelectric Projects Summary Terrestrial Shoreline Community Types Summary Shoreline and Terrestrial Invasive Species Summary	13				
Figur Figur Figur Figur Figur Figur Figur Figur Figur Figur Figur	e 1 e 2 e 4 e 5 e 6 e 7 e 6 e 7 e 9 e 11 2 e 13 4 e 15 e 15		Project Location and Overview Map Point Intercept Grid Provided by the WDNR: Saxon Falls Point Intercept Grid Provided by the WDNR: Superior Falls June Point Intercept Survey: Saxon Falls August Point Intercept Survey: Superior Falls August Point Intercept Survey: Superior Falls Rake Fullness per WDNR Protocol Sediment Basket Terrestrial and Shoreline Survey and Invasive Species: Saxon Falls June Predominant Species: Saxon Falls June Predominant Species: Superior Falls August Predominant Species: Saxon Falls August Predominant Species: Superior Falls August Predominant Species: Superior Falls					

Attachment A	Aquatic Invasive Species Survey Field Data Sheets – June: Saxon Falls
Attachment B	Aquatic Invasive Species Survey Field Data Sheets – June: Superior Falls
Attachment C	Aquatic Invasive Species Survey Field Data Sheets – August: Saxon Falls
Attachment D	Aquatic Invasive Species Survey Field Data Sheets – August: Superior Falls
Attachment E	WDNR 3200-125 Form
Attachment F	Photo Log
Attachment G	Terrestrial Survey Field Data Sheets

© 2021 GAI CONSULTANTS

1.0 **Project Overview**

The Saxon Falls and Superior Falls Hydroelectric Projects (Projects), Federal Energy Regulatory Commission (FERC) Nos. 2610 and 2587, located on Montreal River in Iron County, Wisconsin is owned, operated, and maintained by Northern States Power Company – Wisconsin (Licensee), d/b/a Xcel Energy. The current license expires on December 31, 2024, and as part of relicensing, the Licensee completed an invasive species study to identify the presence and extent of aquatic and terrestrial invasive species. On the behalf of Mead & Hunt, GAI is pleased to submit the results of an Aquatic and Terrestrial Invasive Species (ATIS) Study conducted June 23, 24, and 25, and August 16, 17, and 18, 2021 (Study) to fulfill this request. This Study report provides baseline data on native species and aquatic and terrestrial invasive species and includes:

- Aquatic plant surveys two sampling events conducted in June and August,
- Water samples collected during the August survey,
- Sediment samples collected during the August survey, and
- Terrestrial upland survey conducted during the August survey.

2.0 Introduction

Forming the western border of the Upper Michigan Peninsula as it meets Wisconsin, the Montreal River is home to two of the tallest waterfalls in the Upper Midwest and is considered one of the premier, advanced whitewater runs in the area. It is one of only a few rivers in Wisconsin that flows north, emptying into Lake Superior at its mouth. Much of the watershed remains undeveloped, though historically it was strongly influenced by mining in the area. Water quality remains good, and the 226 square mile watershed supports several class I and II trout streams and excellent fish and aquatic life condition.

Invasive species pose one of the main threats to aquatic systems. They are defined as non-native species that, when introduced cause, or are likely to cause, harm to the environment, human health, or the economy. Invasive plant species can displace native populations, impair boating, reduce wildlife habitat, and cause nutrient imbalance. Once established within the Project boundary, invasive species can be transferred downstream through water releases or from areas outside of the Project boundary by recreationists and migrating wildlife.

This ATIS Study was conducted to assess the presence of known species and identify any new invasive species in the Project area. The Study encompassed portions of the Montreal River within the Saxon and Superior Hydroelectric Project boundaries and included aquatic and terrestrial plants and select aquatic invertebrates. The Project boundary is located within the Township of Saxon, Iron County, Wisconsin and Township of Ironwood, Gogebic County, Michigan (Figure 1). This report summarizes the results of the 2021 aquatic and terrestrial plant surveys, water samples, and sediment samples.

3.0 Methodology

Prior to performing the field work, GAI reviewed known species and historic status of the Project. Until this Study, only limited information was available regarding invasive species within the Project boundaries. WDNR indicated that banded mystery snails (*Vivaparus geogianus*), narrow leaf cattail (*Typha angustifolia*), and reed canary grass (*Phalaris arundinacea*) have been observed at the Saxon Falls Project in 2011. At Superior Falls, the impoundment is surveyed for purple loosestrife (*Lythrum salicaria*) annually by the Licensee, first being documented in 2020 (WDNR 2020).

3.1 Upstream and Downstream Inundated Areas

3.1.1 Aquatic Plant Survey

Aquatic plants were sampled approximating the WDNR Point-Intercept protocols as listed in *Recommended Baseline Monitoring of Aquatic Plants in Wisconsin* (WDNR 2019). Two sample events were completed: one on June 23-25 and one on August 16-18, 2021. The WDNR provided a grid of sample points for each Saxon Falls and Superior Falls to follow for this method (Figures 2 and 3). The grid used within the Saxon Falls Project area had 167 sample points and the Superior Falls Project area had 162 points distributed evenly throughout the waterway. Each sampling point was located using a boat and a Trimble R1 GNSS Receiver and was assessed for sample ability (Attachments A, B, C, and D).

Points that could not be sampled were cataloged as following:

- Non-navigable (thick emergent plant growth, shallow water, or safety),
- Terrestrial (point intercept located in an upland area), and
- Obstacle (rocks or fallen trees).

Points were sampled using a double-sided rake, mounted on a pole, by lowering the rake to rest lightly on the river bottom, twisted twice, then raised straight up out of the water. At each sampled point aquatic plant species presence and density (Figures 4, 5, 6 and 7) were collected. Plant density was measured by rake fullness (Figure 8). Maximum depth of colonization (MDC) was determined by three empty rake retrievals in three different areas at the same depth. Once MDC was determined, points where water depth was greater than MDC were not sampled. Additional plants not collected on the rake sample but visible within 6 feet of the sample point were recorded as a visual sighting on the datasheets.

Areas not captured by the point intercept grid were monitored for the species listed in the WDNR aquatic invasive rapid response species list (WDNR 2016). No permanent vouchers were collected. Observation of one new species, yellow iris (*Iris pseudacorus*), was reported to the WDNR and Mead & Hunt via email using photos, GPS location, and WDNR form 3200-125 (Attachments E and F). Specimens were collected and held until verification was confirmed, due to positive verification using the photos and COVID contact restrictions, this sample did not need to be delivered to the WDNR ATIS coordinator and was therefore disposed of in a manner that would not spread the species.

3.1.2 Water Samples

To monitor for the presence of spiny and fishhook water fleas (*Bythotrephes longimanus* and *Cercopagis pengoi*) and zebra mussels (*Dreissena polymnorpha*), two water samples, one in both the reservoirs and one in both the tailwaters, were collected during the August survey approximating WDNR monitoring protocol for water fleas and zebra mussels (Figures 4 and 5, WDNR 2020). A 250-micron mesh zooplankton net was used to collect water samples for water fleas and a 64-micron mesh zooplankton net was used to collect water samples for zebra mussel veligers. For each sample in the reservoir, a horizontal tow was conducted by lowering the net into the water so that the top of the net was fully submerged, and the bottom of the net was not touching the bottom. With the net in this position, the boat was driven backwards slowly (about 2 miles per hour) for two minutes.

Shallow water and fast flows at the tailwater locations prevented the use of a boat, therefore the sampling method was adjusted for this sampling event. Each area was accessed on foot. The plankton net was positioned in the current, such that the top of the net was submerged while the bottom of the net did not touch the bottom substrate and was held in this position with water flowing through for two minutes to collect the water sample.

For each sample, as much water as possible was decanted from the collection cup. While raising the zooplankton net from the water the net was rinsed from the outside so that the whole sample would be washed into the collection cup. The final sample was poured into a 250 mL sample bottle and preserved in 95% ethanol at a 4:1 ethanol to sample ratio. The preserved water samples were sent to the Wisconsin State Laboratory of Hygiene, Madison, Wisconsin as requested by the WDNR invasive species coordinator to be analyzed for water fleas.

3.1.3 Sediment Samples

To monitor for invasive macroinvertebrates, sediment samples were collected at water access locations: the Saxon public boat landing, the Superior canoe take-out, and the private launch used by the Licensee (Figures 4 and 5). A shovel was used to scoop approximately six inches of sediment into a 10-inch Tetra Pond Planter Basket, with a 1/32nd inch mesh (Figure 9). Fine sediment was flushed out of the basket and the remaining materials were examined for Asian clam (*Corbicula fluminea*), faucet snail (*Bithynia tentaculata*), New Zealand mud snail (*Potamopyrgus antipodarum*), Malaysian trumpet snail (*Melanoides tuberculatus*), rusty crayfish (*Orconectes rusticus*), Chinese mystery snail (*Cipangopaludina chinensis*), and other invasive macroinvertebrates. The area around these launches were also visually examined for live snails, crayfish, or shells.

3.2 Terrestrial Upland Areas

Upland Shoreline and terrestrial areas in the Project were surveyed in August using two methods.

3.2.1 Upland Shorelines

Upland shoreline areas were studied by GAI on August 16, 17 and 18, 2021 (Attachment G). The upland shoreline was sampled from the boat, or on foot where the use of a boat was not feasible such as the Saxon bypass reach. While the boat was moving slowly an overall characterization of the terrestrial plant composition along the shoreline was made within a 10meter riparian zone visible from open water. Both reaches of the river were comprised of undeveloped forested shorelines. The Saxon shoreline survey was broken up in two segments (Segments 1 and 2, Figure 10) to respectively capture the south and north shorelines. The Superior shoreline survey was broken up into six segments (Segments 3 to 8, Figure 11) to capture the various reaches and meanders of the river, some of which required access by foot due to low water and log jams. All six of the segments were undeveloped and forested and covered both sides of the shoreline. When plants included in the NR 40 list were observed, the species type, approximate relative abundance, and location on the shoreline (latitude and longitude) were identified. An estimate of relative abundance and the length of shoreline where each species was present was recorded in field notes. Areas present within the Project boundaries where access was not safe (i.e., waterfalls, large rapids, steep shorelines) were surveyed visually as completely as possible from a safe area. Relative abundance of each observed species within a segment was determined using the Daubenmire Classification Scheme Cover Ranking System to estimate the percent foliage cover as would be observed standing above, perpendicular to the ground. This ranking system was used to estimate relative abundance, as it reduces the influence of individual bias in estimating foliage cover and can be applied to the relative size and length of a given segment of study. See Table 1 below for an overview of the Daubenmire Classification Scheme Cover Ranking System.

Table 1

Daubenmire Classification Scheme Cover Ranking System

Percent Foliage Cover	Ranks
0-5	1
5-25	2
25-50	3
50-75	4
75-95	5
95-100	6

3.2.2 Upland Terrestrial Areas

Upland areas owned by the Licensee within the Project boundary were surveyed by GAI using a meander survey on August 17 and 18, 2021. The route traveled during the meander survey was recorded using a Trimble R1 GNSS Receiver with a GPS device. An overall characterization of the terrestrial plant community was made. When plants included in the NR 40 list were observed, the species and location (latitude and longitude) were recorded. An estimate of relative abundance, using the Daubenmire system, and the extent of area where the species were present were recorded, as was the route of travel during the meander.

4.0 Results and Discussion

4.1 Aquatic Plant Survey

4.1.1 June Survey

A total of 110 points were sampled during the June survey at Saxon Falls, completed on June 23, 2021 (Figure 4, Attachment A). Of the points not sampled, 11 were in areas greater than the MDC, 30 were terrestrial, 13 were too shallow, and three points were past the safety buoy of the dam. Of the sampled points, 110 were shallower than the maximum depth of plants of 7.5 feet and 73 sample points had vegetation. Eighteen species were found during the survey, four of which were observed visually, but not present on the rake: spatterdock (*Nuphar variegata*), reed canary grass (*Phalaris arundinacea*), common arrowhead (*Sagittaria latifolia*), and bur-reeds (*Sparganium* spp.). Predominant species were fern pondweed (*Potamogeton robbinsii*), sweet flag (*Acorus americanus*), common waterweed (*Elodea canadensis*), and coontail (*Ceratophyllum demersum*, Figure 12). The average rake fullness across the Study was 1.69 (Figure 8). Table 2 lists the species found during this survey.

A total of 108 points were sampled during the Superior Falls June survey completed on June 24 and 25, 2021 (Figure 5, Attachment B). Of the points not sampled, 4 points were not navigable, 19 were terrestrial, and 31 were past the safety buoys of the dam and past the dam in rocky rapids. Of the sampled points, 108 were shallower than the maximum depth of plants of 8.8 feet and 21 sample points had vegetation. Ten species were found during the survey, three of which were observed visually, but not present on the rake: large-leaf pondweed (*Potamogeton amplifolius*), white water crowfoot (*Ranunculus aquatilis*), and hardstem bulrush (*Schoenoplectus acutus*). Predominant species were fern pondweed, water star-grass (*Heteranthera dubia*), common bur-reed (*Sparganium eurycarpum*), and common arrowhead

(Figure 13). The average rake fullness across the Study was 1.38 (Figure 8). Table 2 lists species found during this survey.

No aquatic invasive species were identified on the rake during the June Saxon Falls or Superior Falls Studies. However, yellow iris (*Iris pseudacorus*) was flowering along the shoreline of Superior Falls outside of mapped sample points. Three yellow iris plants were observed growing sporadically along the west shoreline during the June survey. Figure 5 depicts the locations of yellow iris found during the Study.

4.1.2 August Survey

The late season Saxon Falls survey was completed on August 17, 2021. A total of 83 points were surveyed (Figure 6, Attachment C). Of the remaining points, 14 were in areas greater than the MDC, 55 were too shallow, 12 were terrestrial, and three were past the hydro dam safety barrier. Seventy-eight of the 83 sampled points were shallower than the MDC of 7.5 feet, and 56 sample points had vegetation. Fourteen species were found on the rake during this late season survey with another two plants as visual sightings (Table 2). The predominant species overall was fern pondweed with common waterweed, coontail, and various pondweeds being predominant in some rake samples (Figure 14). The average rake fullness across the Study was 2.29. No aquatic invasive species were observed during the August Study. Purple loosestrife observed along the shoreline was captured in the terrestrial survey.

The late season Superior Falls survey was completed on August 16 and 18, 2021. A total of 96 points were surveyed (Figure 7, Attachment D). Of the remaining points, 12 were in areas greater than the MDC, two points were too shallow, two points were not navigable, 18 were terrestrial, one was missed, and 31 were past the safety buoys of the dam and past the dam in rocky rapids. Ninety-one of the 96 sampled points were shallower than the MDC of 5.0 feet, and 20 sample points had vegetation. Seven species were found on the rake during this late season survey with another two plants as visual sightings (Table 2). The predominant species was fern pondweed, common waterweed, flat-stem pondweed, and one location of predominantly bur-reed (Figure 15). The average rake fullness across the Study was 1.47. Solitary purple loosestrife plants were observed, and locations were recorded, but no widespread populations were encountered (Figure 7).

Scientific Name	Common	Littoral Fr Occu	requency of rrence ^a	Relative Frequency of Occurrence ^b	
Naine	Name	June	August	June	August
		Saxon I	Falls		
Acorus americanus	sweet flag	1.82	-	1.82	-
Ceratophyllum demersum	coontail	11.82	7.69	11.82	6.82
Chara sp.	muskgrass	0.91	2.56	0.91	2.27
Elodea canadensis	common waterweed	13.64	11.54	13.64	10.23
Lemna minor	small duckweed	0.91	-	0.91	-

Table 2 Aquatic Plant Species Abundance in the Montreal River

Scientific Name	Common Name	Littoral Fi Occur	requency of rrence ^a	Relative Frequency of Occurrence ^b		
Name	Name	June	August	June	August	
Myriophyllum heterophyllum	various-leaved milfoil	0.91	-	0.91	-	
Najas flexilis	slender naiad	-	1.28	-	1.14	
Nuphar variegata	spatterdock	visual	visual	visual	visual	
Phalaris arundinacea	reed canary grass	visual	-	visual	-	
Potamogeton alpinus	alpine pondweed	-	2.56	-	2.27	
Potamogeton amplifolius	large-leaf pondweed	0.91	1.28	0.91	1.14	
Potamogeton epihydrus	ribbon-leaf pondweed	-	1.28	-	1.14	
Potamogeton foliosus	leafy pondweed	-	visual	-	visual	
Potamogeton nodosus	long-leaf pondweed	4.55	6.41	4.55	5.69	
Potamogeton obtusifolius	blunt-leaf pondweed	6.36	8.97	6.36	7.95	
Potamogeton robbinsii	fern pondweed	48.18	60.26	48.18	53.41	
Potamogeton vaseyi	Vasey's pondweed	4.55	2.56	4.55	2.27	
Ranunculus aquatilis	white water crowfoot	1.82	2.56	1.82	2.27	
Ranunculus flabellaris	yellow water crowfoot	2.73	2.56	2.73	2.27	
Utricularia vulgaris	common bladderwort	-	1.28	-	1.14	
Sagittaria latifolia	common arrowhead	visual	-	visual	-	
Sparganium spp.	bur-reed	visual	-	visual	-	
<i>Typha</i> spp.	Cattail	0.91	-	0.91	-	
	·	Superior	r Falls	· 		
Ceratophyllum demersum	Coontail	0.93	1.10	3.70	2.86	

Scientific	Common	Littoral Fi Occu	requency of rrence ^a	Relative Frequency of Occurrence ^b		
Name	Name	June	August	June	August	
Elodea canadensis	common waterweed	0.93	6.59	3.70	17.14	
Heteranthera dubia	water star- grass	5.56	-	22.22	-	
Potamogeton amplifolius	large-leaf pondweed	visual	Visual	visual	visual	
Potamogeton natans	floating-leaf pondweed	-	visual	-	visual	
Potamogeton nodosus	long-leaf pondweed	0.93	2.20	3.70	5.71	
Potamogeton robbinsii	fern pondweed	12.04	17.58	48.15	45.71	
Potamogeton zosteriformis	flat-stem pondweed	-	8.79	-	22.86	
Ranunculus aquatilis	white water crowfoot	visual	-	visual	-	
Sagittaria Iatifolia	common arrowhead	0.93	-	3.70	-	
Schoenoplectus acutus	hardstem bulrush	visual	-	visual	-	
Sparganium eurycarpum	common bur- reed	3.7	-	14.81	-	
<i>Sparganium</i> spp.	bur-reed species	-	1.10	-	2.86	

^aThe littoral frequency of occurrence refers to the number of times the species was found divided by the total number of sample locations shallower than the MDC.

^bThe relative frequency of occurrence refers to the frequency at which one species was found in comparison to all species found (percentage).

4.1.3 Overall Aquatic Plant Survey Analysis and Observations

The aquatic plant community was diverse and well established in both Saxon Falls and Superior Falls areas of the Project. While fern pondweed was the dominant species across all surveys, plant community composition varied greatly and demonstrated robust composition and structure across habitat areas. Plants were primarily found growing in areas protected from the current of the river, for example in sheltered bays and near shorelines.

The Saxon Project area contained several areas protected from the main channel of flow. These areas are not exposed to scouring of high flow events and support most of the aquatic plant growth along the river. Some of these areas were accessible in June but had vegetation thick enough to impede navigation in August. Substrates within the main channel of the river were dominated by sand while protected areas that supported the bulk of the aquatic vegetation had predominantly fine organic substrates. Diverse wildlife was observed in the protected areas including a pair of nesting swans, turtles, and various waterfowl and smaller migratory birds.

While demonstrating a healthy ecosystem, overall Superior Falls had fewer sample points with vegetation and lower plant diversity (Table 4). Most of the substrate in the Superior Falls Project is cobble and bedrock, and water flow keeps the main channel scoured of softer sediments. The Montreal River in the upper Project area was shallow with riffles flowing over cobble. The central portion of the area was divided by an island. The north side of the island was rocky with fast, riffled flow. The south side of the island was shaded and had multiple log jams. The majority of aquatic plants were found in the protected bays just upstream of the hyrdo plant. Additional indicators of good water health were observed in the Superior Falls Project. Freshwater sponges and bryozoan were observed during both the June and August surveys. These aquatic organisms are indicators of a healthy ecosystem and good water quality.

Table 3

Statistic	Sax	on Falls	Superior Falls		
olulistic	June 2021	August 2021	June 2021	August 2021	
Frequency of Occurrence	66.36	71.79	19.44	21.98	
Maximum Depth of Plants	7.5 feet	7.5 feet	8.8 feet	5.0 feet	
Species Richness	18	16	10	9	
FQI	23.8	26.7	13.2	13.5	

overall baken i and bapener i and right beleetine i rejecto ballinary

4.2 Water Samples

The samples for water fleas and zebra mussel veligers will be analyzed by the Wisconsin State Lab of Hygiene as requested by the WDNR invasive species coordinator. Because these samples can be preserved to extend shelf life, the samples are often not analyzed until the winter months. Water fleas are large enough to be observed without a microscope. No invasive water fleas or spines of the fleas were observed in the sample or on the net when the sample was collected in the field. Following the standard operating procedure, the Lab will provide results directly to the WDNR.

4.3 Sediment Samples

Boat launches are an ideal location to sample for aquatic invasive species because of a higher rate of traffic including boats launching and people shore-fishing. Public access locations can be a conduit for the introduction of aquatic invasive species through the dumping of bait buckets or emptying of boat bilges, live wells, or hulls holding water from other infested areas. Sediment samples collected at water access locations did not detect any invasive macroinvertebrates, and no species were observed when the areas were reviewed visually.

4.4 Terrestrial Upland Areas

Shoreline and terrestrial invasive surveys conducted by GAI along the portions of shoreline and terrestrial areas included within the study area found an undeveloped landscape supporting diverse native communities. Shorelines were observed from a boat where possible, or by walking up the river where navigability was limited. Upland areas were dominated by heavily wooded areas, with portions of open powerline rights-of-way, roadsides, and open scrub/shrub areas. The densely forested areas were often too thickly vegetated to access and also appeared to be unimpacted by human activities with limited opportunities for the introduction of invasive species populations.

4.4.1 Upland Shoreline Survey – Saxon

The Saxon survey was separated into two segments to respectively capture the north and the south shorelines of the river. Both shorelines were undeveloped and forested and were dominated by the same plant species, including: sugar maple (*Acer saccharum*), willows (*Salix* spp.), woolgrass (*Scirpus cyperinus*), green ash (*Fraxinus pennsylvanica*), silver maple (*Acer saccharum*), swamp milkweed (*Asclepias_incarnata*), Joe pye weed (*Eupatorium maculatum*), balsam fir (*Abies balsamea (L.) Mill.*), white spruce (*Picea glauca*), ferns (*Pteridophyta* spp.), paper birch (*Betula papyrifera*), tag alder (*Alnus serrulata*), yarrow (*Achillea millefolium*), jewelweed (*Impatiens capensis*), basswood (*Tilia americana*), white cedar (*Thuja occidentalis*), and Canada goldenrod (*Solidago canadensis*).

Invasive species identified during the terrestrial shoreline survey were limited to purple loosestrife (*Lythrum salicaria*) and narrowleaf/hybrid cattail (*Typha angustifolia and T. x glauca*). Previous occurrence of narrowleaf cattail has been documented. While purple loosestrife had not been previously identified, it is surveyed annually downstream. Populations of narrowleaf/hybrid cattail were limited to small populations of plants and did not rank higher than 2 using the Daubenmire system. Purple loosestrife populations observed were limited to individual plants or small populations and were not widespread throughout the segments; this species did not rank higher than 1 using the Daubenmire system. Purple loosestrife and narrowleaf/hybrid cattail are relatively common invasive species and well-established in many parts of northern Wisconsin and the Upper Peninsula of Michigan. Purple loosestrife was usually identified growing in open, wet areas of the study area while narrowleaf/hybrid cattail was observed growing in open water or normally inundated areas.

4.4.2 Upland Terrestrial Area – Meander Survey of Saxon

A meander survey was completed throughout the safely accessible areas owned by the licensee. The wooded portions of this area were dominated by balsam fir, white pine, red pine, white spruce, sugar maple, silver maple, ferns, reed canary grass, tag alder, riverbank grape, large-leaved aster (*Eurybia macrophylla*), winterberry (*Ilex verticillata*), paper birch (*Betula papyrifera*), and gooseberry (*Ribes uva-crispa*). The open and scrub/shrub areas were dominated by willow saplings, Canada goldenrod, reed canary grass, dogbane, Joe pye weed, trembling aspen saplings, and sumac (*Rhus* spp.). The meander area contained small populations of Canada thistle, aquatic forget-me-not, narrowleaf/hybrid cattail spp., wild parsnip (*Pastinaca sativa*), tansy (*Tanacetum vulgare*), and spotted knapweed.

4.4.3 Upland Shoreline Survey – Superior

The survey was separated into six segments (segments 3 through 8) to capture the various reaches and meanders of the river. All six segments captured data for both sides of the shoreline and were comprised of undeveloped and forested shoreline. The shores were dominated by: Joe pye weed, tag alder, silver maple, reed canary grass, ferns, riverbank grape (*Vitis riparia*), oaks, green ash, willows, Canada goldenrod, basswood, white spruce, red pine (*Pinus resinosa*), jewelweed, sedges (*Carex* spp.), sugar maple, dogbane (*Apocynum androsaemifolium*), blue vervain (*Verbena hastata*), and stinging nettle (*Urtica dioica*).

Invasive species identified during the terrestrial shoreline survey were limited to purple loosestrife, narrowleaf/hybrid cattail, spotted knapweed (*Centaurea stoebe*), yellow iris, and aquatic forget-me-not (*Myosotis scorpioides*). Previous occurrence of purple loosestrife has been documented, while the rest of the identified invasive species had not been previously identified. Populations of all invasive species were limited to individual plants or small populations of plants and did not rank higher than 1 using the Daubenmire system, except for spotted knapweed, which ranked 2 due to a patch growing in one portion of dry, sandy, and gravelly shoreline. All the identified invasive species are relatively common and well-established in many parts of northern Wisconsin and the Upper Peninsula of Michigan. Purple

Page 11

loosestrife and yellow iris were identified growing in open, wet areas of the study area while narrowleaf/hybrid cattail was observed growing in open water or normally inundated areas.

Upland Terrestrial Area – Meander Survey of Superior 4.4.4

The wooded portions of the meander area were dominated by trembling aspen, balsam fir, white spruce, riverbank grape, ferns, Solomon's seal (Polygonatum multiflorum), poison ivy (Toxicodendron radicans), gray dogwood (Cornus racemosa), green ash, red maple (Acer rubrum), sugar maple, large-leaved aster, white pine, paper birch, gooseberry, white cedar, and tag alder. The open areas of the meander survey were dominated by Canada goldenrod, reed canary grass, sumac, dogbane, tag alder, gray dogwood, trembling aspen saplings, blackberry (Rubus fruticosus), poison ivy, boneset (Eupatorium perfoliatum), black-eyed Susan (Rudbeckia hirta), sunflowers (Helianthus spp.), lupine, woolgrass, sedges, and wild pea (Lathyrus odoratus). The meander area contained small populations of Canada thistle, tansy, common and glossy buckthorn (*Rhamnus cathartica* and *Frangula alnus*), wild parsnip, narrowleaf/hybrid cattail, and spotted knapweed.

	Saxo	on Falls	Superior Falls		
Community Type	Mileage of Observation	Percentage of Occurrence	Mileage of Observation	Percentage of Occurrence	
Undeveloped Forest	3.62	100.0%	3.36	100.0%	

Ter	restrial Shoreline Community Types Summary							
		Saxon Falls				Superior Fall		
·····			_	Miles as of	Daviasi			

Table 4

	Common Name	Saxon Falls		Superior Falls				
Species		Mileage of	Percentage of	Mileage of	Percentage of			
		Observation	Occurrence	Observation	Occurrence			
Shoreline Meander								
Centaurea stoebe	Spotted Knapweed	-	-	0.42	5.0%			
Iris pseudacorus	Yellow Iris	-	-	0.44	<1.0%			
Lythrum salicaria	Purple Loosestrife	3.62	<1.0%	1.61	<1.0%			
Myosotis palustris	Aquatic Forget- me-not	-	-	1.07	1.0%			
<i>Typha</i> spp.	Invasive Cattail spp.	3.62	<5.0%	1.33	<1.0%			
Terrestrial Meander								
Cirsium arvense	Canada thistle	0.01	<1.0%	0.05	<1.0%			
Myosotis palustris	Aquatic Forget- me-not	0.19	5.0%	-	-			

Table 5

Shoreline and Terrestrial Invasive Species Summary

Species	Common Name	Saxon Falls		Superior Falls	
		Mileage of Observation	Percentage of Occurrence	Mileage of Observation	Percentage of Occurrence
Tanacetum vulgare	Tansy	0.14	5.0%	0.12	<1.0%
Rhamnus cathartica	Common buckthorn	-	-	0.37	5.0%
Frangula alnus	Glossy buckthorn	-	-	0.19	5.0%
<i>Typha</i> spp.	Invasive Cattail spp.	0.05	1.0%	0.12	<1.0%
Centaurea biebersteinii	Spotted knapweed	0.05	5.0%	0.27	1.0%
Pastinica sativa	Wild parsnip	0.01	<1.0%	-	-

5.0 References

Daubenmire, Rexford. 1959. A Canopy-coverage method of vegetational analysis. Northwest Science 33:43-64.

- Wisconsin Department of Natural Resources. 2020. *Waterflea Sampling Protocol; Standard Operating Procedures.* 19 pp.
- Wisconsin Department of Natural Resources. 2020. *Veliger Sampling Protocol; Standard Operating Procedures.* 16 pp.
- Wisconsin Department of Natural Resources. 2020. Study Requests and Request for Information Relicense of Janesville Central P-2347 & Beloit (Blackhawk) P-2348. February 12, 2020.
- Wisconsin Department of Natural Resources. 2019. *Recommended Baseline Monitoring of Aquatic Plants in Wisconsin: sampling design, field and laboratory procedures, data entry and analysis,* and applications. PUB-SS-1068.
- Wisconsin Department of Natural Resources. 2016. *Aquatic Invasive Rapid Response Species List*. PUB-SS-1162.

FIGURE 1 Project Location and Overview Map

G:\R210322.00 - GIS\MXD\Point_Intercept_Survey\XCEL_Saxon_and_Superior_Falls_Fig1_Project_Overview_2021_09_30.mxd

FIGURE 2 Point Intercept Grid Provided by the WDNR: Saxon Falls

Created: 2005 Long. -90.37386307 Z 99. 167 Site1: Lat. 46.5396019 5 63 161 Saxon Falls Flowage 167 Sampling Points 40m between Points 67.8 acres / 27.4 ha 154(159 158 150 455, T47N R01E S21 WBIC 2941100 Iron County 49 45 142 ₹(0.8 Kilometers 138 113 125 134 141 136 114 126 135 101 109 121 132 119 130 ros 120 (3-111 123 124 8. 115 127 128 102 110 122 105 116 12 117 106 4. 107 ę. 95 92 8. 8 66 6. 8. 6 **9**2 98. 82 68. ò 28 88. 8. 8 87 9 89 99 60 78 62 19 22 23 4 0. 5 56 64 55 28 59 62 63 22 -01 65 R 54. त्न 52 \$ 42 46 \$ 0.4 6g**.** æ. 42. 43 32 35 8 37 26 22 28 2 30 24 27 50 33 53 3 0.2 0 ∞. 12 4 2. 0. 8 6 **D** 4 3 N. 0

FIGURE 3 Point Intercept Grid Provided by the WDNR: Superior Falls

FIGURE 4 June Point Intercept Survey: Saxon Falls

FIGURE 5 June Point Intercept Survey: Superior Falls

G:\R210322.01 - GIS\MXD\Point_Intercept_Survey\XCEL_Superior_Falls_Fig5_June_Point_Intercept_Survey_2021_09_30.mxd

FIGURE 6 August Point Intercept Survey: Saxon Falls

FIGURE 7 August Point Intercept Survey: Superior Falls

G:\R210322.01 - GIS\MXD\Point_Intercept_Survey\XCEL_Superior_Falls_Fig7_August_Point_Intercept_Survey_2021_09_30.mxd

FIGURE 8 Rake Fullness per WDNR Protocol

Fullness Rating	Coverage	Description
1	Min Harris	Only few plants. There are not enough plants to entirely cover the length of the rake head in a single layer.
2	A CALL AND A	There are enough plants to cover the length of the rake head in a single layer, but not enough to fully cover the tines.
3		The rake is completely covered and tines are not visible.

Figure 8. Rake Fullness per WDNR protocol.

Illustration of rake fulness rating used during the survey, photo used from *Recommended Baseline Monitoring of Aquatic Plants in Wisconsin: sampling design, field and laboratory procedures, data entry and analysis, and applications.* PUB-SS-1068,WDNR 2019.

FIGURE 9 Sediment Basket

Figure 9. Sediment Basket. Using a 10-inch Tetra Pond Planter Basket, with a 1/32nd inch mesh, a sample is being rinsed for examination.

FIGURE 10 Terrestrial and Shoreline Survey and Invasive Species: Saxon Falls

G:\R210322.00 - GIS\MXD\Point_Intercept_Survey\XCEL_Saxon_Falls_Fig10_Terrestrial_and_Shoreline_Survey_and Invasive_Species_2021_09_30.mxd

G:\R210322.00 - GIS\MXD\Point_Intercept_Survey\XCEL_Saxon_Falls_Fig10_Terrestrial_and_Shoreline_Survey_and Invasive_Species_2021_09_30.mxd

G:\R210322.00 - GIS\MXD\Point_Intercept_Survey\XCEL_Saxon_Falls_Fig10_Terrestrial_and_Shoreline_Survey_and Invasive_Species_2021_09_30.mxd

FIGURE 11 Terrestrial and Shoreline Survey and Invasive Species: Superior Falls

G:\R210322.01 - GIS\MXD\Point_Intercept_Survey\XCEL_Superior_Falls_Fig11_Terrestrial_and_Shoreline_Survey_and Invasive_Species_2021_09_30.mxd

G:\R210322.01 - GIS\MXD\Point_Intercept_Survey\XCEL_Superior_Falls_Fig11_Terrestrial_and_Shoreline_Survey_and Invasive_Species_2021_09_30.mxd

FIGURE 12 June Predominant Species: Saxon Falls

G:\R210322.00 - GIS\MXD\Point_Intercept_Survey\XCEL_Saxon_Falls_Fig12_June_Predominant_Species_2021_09_30.mxd

FIGURE 13 June Predominant Species: Superior Falls

G:\R210322.01 - GIS\MXD\Point_Intercept_Survey\XCEL_Superior_Falls_Fig13_June_Predominant_Species_2021_09_30.mxd

FIGURE 14 August Predominant Species: Saxon Falls

G:\R210322.00 - GIS\MXD\Point_Intercept_Survey\XCEL_Saxon_Falls_Fig14_August_Predominant_Species_2021_09_30.mxd

FIGURE 15 August Predominant Species: Superior Falls

G:\R210322.01 - GIS\MXD\Point_Intercept_Survey\XCEL_Superior_Falls_Fig15_August_Predominant_Species_2021_09_30.mxd

ATTACHMENT A Aquatic Invasive Species Survey Field Data Sheets – June: Saxon Falls

ATTACHMENT B

Aquatic Invasive Species Survey Field Data Sheets – June: Superior Falls

<

ATTACHMENT C Aquatic Invasive Species Survey Field Data Sheets – August: Saxon Falls

ATTACHMENT D Aquatic Invasive Species Survey Field Data Sheets – August: Superior Falls

ATTACHMENT E WDNR 3200-125 Forms

The purpose of this form is to notify DNR of a new species of AIS in a waterbody. Only use if you found an aquatic invasive plant on a lake where it hasn't been found previously.

To find where aquatic invasives have already been found, visit: http://dnr.wi.gov/lakes/ais.

Notice: Information on this voluntary form is collected under ss. 33.02 and 281.11, Wis. Stats. Personally identifiable information collected on this form will be incorporated into the DNR Surface Water Integrated Monitoring System (SWIMS) Database. It is not intended to be used for any other purposes, but may be made available to requesters under Wisconsin's Open Records laws, ss. 19.32 - 19.39, Wis. Stats.

Primary Data Collector							
Name	Phone Number	Email					
Laura Sass	920-328-0980	l.sass@gaiconsultants.com					
Monitoring Location							
Waterbody Name	Township Name	County					
Montreal River	Saxon, WI	IION					
Boat Landing (if you only monitor at a boat landing)							
Date and Time of Monitoring or Discovery							
Monitoring Date Start Time End Time							
6/23/2021							
Information on the Aquatic Invasive Plant Found (Fil	I out one form for each species	s found.)					
Which aquatic invasive plant did you find?: Curly-leaf Pondwee	ed 🔄 Eurasian Water-milfoil	Purple Loosestrife					
Brittle Naiad Hydrilla	Brazilian Waterweed	Yellow Floating Heart					
Where did you find the invasive plant?	x Yellow Iris						
Rooted along the shore line							
Latitude: 46.554133	Longitude: -90.414406						
Approximately how large an area do the plants occupy?							
X A Few Plants One or a few beds Many bed	s 🛛 🗌 A Whole Bay or Portion of La	ake					
Widespread, covering most shallow areas of lake	Don't know (e.g. didn't chec	k the whole lake)					
Was the plant floating or rooted?	X Rooted						
Estimated percent cover in the area where the invas	ive was found (optional)						
Substrate cobble, % Substrate muck, % Substrate boulders, % 100%	Substrate sand, %	Bottom covered with plants, %					
Voucher Sample							
Did you collect a sample of the plant (a voucher specimen) and bring it to your local DNR office? If so, which office?							
Rhinelander Spooner Green Bay	Oshkosh X Did not take p	lant sample to a DNR office					
🗌 Fitchburg 🗌 Waukesha 🗌 Eau Claire	Superior Other Office _						

Please collect up to 5-10 intact specimens. Try to get the root system, all leaves as well as seed heads and flowers when present. Place in ziplock bag with no water. Place on ice and transport to refrigerator. Bring samples, a copy of this form, along with a map showing where you found the suspect plants to your regional AIS or Citizen Lake Monitoring Coordinator at the DNR.

For DNR AIS Coordinator to fill out				
AIS Coordinator(s) or qualified field staff who verified the occurrent	ce:			
Statewide taxanomic expert who verified the occurrence:(for list see http://dnr.wi.gov/invasives/aquatic/whattodo/staff/AisVe	erificationExper	rts.pdf)		
Was the specimen confirmed as the species indicated above?	Yes	No		If no, what was it?
Herbarium where specimen is housed:		Herbariı	um Specimen ID:	-
Have you entered the results of the voucher in SWIMS?	Yes	No		
AIS Coordinator: Please enter the incident report in SWIMS under paper copy for your records.	r the Incident R	eport project?	for the county the	e AIS was found in. Then, keep the

ATTACHMENT F Photo Log

ATIS Study Photographs

ATIS Study Photographs

ATIS Study Photographs

ATTACHMENT G Terrestrial Survey Field Data Sheets

INVASIVE SURVEY SHORELENE JERRESTRIAL SAXen

	RELATIVE	6	-	6	1	+
	SPECTES	NARONUEAF CATTAIL	PURPLE LBOSESTREFE	NARROWLEAF	PURPLIE	
2/16/21	SEGMENT#			d		

SWERJOR FALLS SHORELENE TNUASINE SURVEY

3/16/21

U U

APPENDIX E-19 Major Land Uses in the Saxon Falls Project Vicinity

APPENDIX E-20 Major Land Uses in the Superior Falls Project Vicinity

APPENDIX E-21 Flood Zone Maps

APPENDIX E-22 Chapter NR102 Water Quality Standards

DEPARTMENT OF NATURAL RESOURCES

NR 102.04

Chapter NR 102

WATER QUALITY STANDARDS FOR WISCONSIN SURFACE WATERS

Subchapter I — General			Subchapter II — Water Quality Standards For Temperature			
NR 102.01	Purpose.	NR 102.20	Purpose.			
NR 102.02	Applicability.	NR 102.22	Definitions.			
NR 102.03	Definitions.	NR 102.23	Categories of standards applicable to temperature.			
NR 102.04	Categories of surface water uses and criteria.	NR 102.24	General water quality criteria for temperature.			
NR 102.05	Application of standards.	NR 102.245	Temperature criteria for limited aquatic life communities.			
NR 102.06	Phosphorus.	NR 102.25	Ambient temperatures and water quality criteria for the protection of			
NR 102.10	Outstanding resource waters.		fish and other aquatic life.			
NR 102.11	Exceptional resource waters.	NR 102.26	Site-specific ambient temperatures.			
NR 102.12	Great Lakes system.	NR 102.27	Site-specific water quality criteria.			
NR 102.13	Fish and aquatic life waters.	NR 102.28	Cold shock standard.			
NR 102.14	Taste and odor criteria.	NR 102.29	Rate of temperature change standard.			
		NR 102.30	Variances to water quality standards for temperature.			

Note: Chapter NR 102 as it existed on September 30, 1973 was repealed and a new chapter NR 102 was created, effective October 1, 1973. Corrections made under s. 13.93 (2m) (b) 7., Stats., Register, August, 1997, No. 500.

Subchapter I — General

NR 102.01 Purpose. (1) The purpose of this chapter is to establish, in conjunction with chs. NR 103 to 105, water quality standards for surface waters of the state pursuant to s. 281.15, Stats. This chapter describes the designated use categories for such waters and the water quality criteria necessary to support these uses. This chapter and chs. NR 103 to 105 constitute the water quality standards for the surface waters of Wisconsin.

(2) The long-range goal of Wisconsin water quality standards is to protect the use of water resources for all lawful purposes. Water quality standards shall protect the public interest, which includes the protection of public health and welfare and the present and prospective uses of all waters of the state for public and private water supplies, propagation of fish and other aquatic life and wild and domestic animals, domestic and recreational purposes, and agricultural, commercial, industrial, and other legitimate uses. In all cases where the potential uses are in conflict, water quality standards shall protect the general public interest.

(3) Water quality standards serve as a basis for developing and implementing control strategies to achieve legislative policies and goals. Water quality standards are the basis for deriving water quality based effluent limitations and the limitations shall be determined to attain and maintain uses and criteria, unless more stringent effluent limitations are established to protect downstream waters. Water quality standards also serve as a basis for decisions in other regulatory, permitting or funding activities that impact water quality.

History: Cr. Register, February, 1989, No. 398, eff. 3–1–89; CR 07–111: am. (1), (2) and (3) Register September 2010 No. 657, eff. 10–1–10.

NR 102.02 Applicability. The provisions of this chapter are applicable to surface waters of Wisconsin.

History: Cr. Register, February, 1989, No. 398, eff. 3-1-89.

NR 102.03 Definitions. In this chapter, the following definitions are applicable to terms used:

(1) "Ambient temperature" means the typical existing temperature of a surface water outside the direct influence of any point source discharge, which may include daily and seasonal changes.

(2) "Mixing zone" means a region in which a discharge of different characteristics than the receiving water is in transit and progressively diluted from the source to the receiving system.

(3) "Natural conditions" means the normal daily and seasonal variations in climatic and atmospheric conditions, and the existing

physical and chemical characteristics of a water or the course in which it flows.

(4) "Natural temperature" means the normal existing temperature of a surface water including daily and seasonal changes outside the zone of influence of any artificial inputs.

(5) "Resource management" means the application of control techniques to enhance or preserve a surface water in accordance with statutory provisions and in the general public interest.

(6) "Sanitary survey" means a thorough investigation and evaluation of a surface water including bacteriological sampling to determine the extent and cause of any bacterial contamination.

(7) "Surface waters" means all natural and artificial named and unnamed lakes and all naturally flowing streams within the boundaries of the state, but not including cooling lakes, farm ponds and facilities constructed for the treatment of wastewaters (the term waters as used in this chapter means surface waters).

(8) "Unauthorized concentrations of substances" means pollutants or other chemicals introduced into surface waters without prior permit or knowledge of the department, but not including accidental or unintentional spills.

History: Cr. Register, September, 1973, No. 213, eff. 10–1–73; r. (1), renum. from NR 102.01, Register, February, 1989, No. 398, eff. 3–1–89; cr. (10), Register, May, 1993, No. 449, eff. 6–1–93; CR 07–111: cr. (intro.) and (1), r. (8) to (10), renum. (1) to (7) to be (2) to (8) Register September 2010 No. 657, eff. 10–1–10.

NR 102.04 Categories of surface water uses and criteria. (1) GENERAL. To preserve and enhance the quality of waters, surface water uses and criteria are established to govern water management decisions. Practices attributable to municipal, industrial, commercial, domestic, agricultural, land development or other activities shall be controlled so that all surface waters including the mixing zone meet the following conditions at all times and under all flow and water level conditions:

(a) Substances that will cause objectionable deposits on the shore or in the bed of a body of water, shall not be present in such amounts as to interfere with public rights in waters of the state.

(b) Floating or submerged debris, oil, scum or other material shall not be present in such amounts as to interfere with public rights in waters of the state.

(c) Materials producing color, odor, taste or unsightliness shall not be present in such amounts as to interfere with public rights in waters of the state.

(d) Substances in concentrations or combinations which are toxic or harmful to humans shall not be present in amounts found to be of public health significance, nor shall substances be present in amounts which are acutely harmful to animal, plant or aquatic life.

(2) REVISED USES AND CRITERIA. The following uses and criteria may be revised as new information or advancing technology

Published under s. 35.93, Stats. Updated on the first day of each month. Entire code is always current. The Register date on each page is the date the chapter was last published.

indicate that revisions are in the public interest. Water used for hydropower and commercial shipping depends mainly on quantity, depth and elevation; consequently, no specific quality criteria for these uses have been prepared.

(3) FISH AND OTHER AQUATIC LIFE USES. All surface waters shall belong in one of the fish and other aquatic life subcategories described in this subsection. Only those use subcategories identified in pars. (a) to (c) shall be considered suitable for the protection and propagation of a balanced fish and other aquatic life community as provided in the federal water pollution control act amendments of 1972, P.L. 92–500; 33 USC 1251 et seq.

(a) *Cold water communities.* This subcategory includes surface waters capable of supporting a community of cold water fish and other aquatic life, or serving as a spawning area for cold water fish species. This subcategory includes, but is not restricted to, surface waters identified as trout water by the department of natural resources (Wisconsin Trout Streams, publication 6–3600 (80)).

(b) *Warm water sport fish communities*. This subcategory includes surface waters capable of supporting a community of warm water sport fish or serving as a spawning area for warm water sport fish.

(c) *Warm water forage fish communities*. This subcategory includes surface waters capable of supporting an abundant diverse community of forage fish and other aquatic life.

(d) *Limited forage fish communities*. (Intermediate surface waters). This subcategory includes surface waters of limited capacity and naturally poor water quality or habitat. These surface waters are capable of supporting only a limited community of forage fish and other aquatic life.

(e) *Limited aquatic life.* (Marginal surface waters). This subcategory includes surface waters of severely limited capacity and naturally poor water quality or habitat. These surface waters are capable of supporting only a limited community of aquatic life.

(4) CRITERIA FOR FISH AND AQUATIC LIFE. Except for natural conditions, all waters classified for fish and aquatic life shall meet the following criteria:

(a) *Dissolved oxygen*. Except as provided in par. (b) and s. NR 104.02 (3), the dissolved oxygen content in surface waters may not be lowered to less than 5 mg/L at any time.

(b) *Dissolved oxygen for cold waters*. Water bodies classified as trout waters by the department (Wisconsin Trout Streams, publication 6–3600 (80)) or as great lakes or cold water communities may not be altered from natural background dissolved oxygen levels to such an extent that trout populations are adversely affected. Additionally, all of the following conditions shall be met:

1. Dissolved oxygen in classified trout streams shall not be artificially lowered to less than 6.0 mg/L at any time, nor shall the dissolved oxygen be lowered to less 7.0 mg/L during the spawning season.

2. The dissolved oxygen in great lakes tributaries used by stocked salmonids for spawning runs shall not be lowered below natural background during the period of habitation.

(c) pH. The pH shall be within the range of 6.0 to 9.0, with no change greater than 0.5 units outside the estimated natural seasonal maximum and minimum.

(d) *Other substances*. Unauthorized concentrations of substances are not permitted that alone or in combination with other materials present are toxic to fish or other aquatic life. Surface waters shall meet the acute and chronic criteria as set forth in or developed pursuant to ss. NR 105.05 and 105.06. Surface waters shall meet the criteria which correspond to the appropriate fish and aquatic life subcategory for the surface water, except as provided in s. NR 104.02 (3).

(e) *Temperature*. Water quality criteria for temperature shall be determined and applied pursuant to subch. II. Heated effluent

shall not cause lethality, inside or outside of the mixing zone, to animal, plant or other aquatic life.

(5) RECREATIONAL USE. (a) *General*. All surface waters shall be suitable for supporting recreational use and shall meet the criteria specified in sub. (6). A sanitary survey or evaluation, or both to assure protection from fecal contamination is the chief criterion for determining the suitability of a water for recreational use.

(b) *Exceptions*. Whenever the department determines, in accordance with the procedures specified in s. NR 210.06 (3), that wastewater disinfection is not required to protect recreational uses, the criteria specified in par. (a) and in chs. NR 103 and 104 do not apply.

(6) CRITERIA FOR RECREATIONAL USE. As bacteriological guidelines, the membrane filter fecal coliform count may not exceed 200 colonies per 100 ml as a geometric mean and may not exceed 400 colonies per 100 ml in more than 10% of all samples during any month. Samples shall be required at least 5 times per month.

(7) PUBLIC HEALTH AND WELFARE USE. (a) *General*. All surface waters shall be suitable for supporting public health and welfare.

(b) *Exceptions*. Whenever the department determines a discharge of heated effluent is not exposed or situated in a manner that may pose a realistic potential for scalding of humans, the criterion specified in sub. (8) (c) does not apply.

(8) CRITERIA FOR PUBLIC HEALTH AND WELFARE USE. (a) *General.* The criteria developed pursuant to ss. NR 105.08 and 105.09 shall be met regardless of whether the surface water is used for public drinking water supply or the applicable fish and aquatic life subcategory.

(b) *Taste and odor criteria*. All surface waters providing public drinking water supplies or classified as cold water or warm water sport fish communities as described in sub. (3) shall meet the taste and odor criteria specified or developed pursuant to s. NR 102.14.

(c) *Temperature criteria*. To protect humans from being scalded, the water temperature of a discharge may not exceed 120°F unless specifically authorized under provisions in subchs. V or VI of ch. NR 106.

(9) WILDLIFE USE AND CRITERIA. (a) Use. All surface waters shall be suitable for supporting wildlife.

(b) *Criteria*. The criteria specified in or developed pursuant to s. NR 105.07 shall be met.

History: Cr. Register, September, 1973, No. 213, eff. 10–1–73; am. (3), Register, December, 1977, No. 264, eff. 1–1–78; renum. from NR 102.02, r. (3) (d) 1. to 3., and (5), renum. (3) (intro.) to (d) (intro.) and (e) and (4) to be (4) (intro.) to (e) and (5) and am. (4) (a), (d), (e) (intro.) and (5), cr. (6) and (7), Register, February, 1989, No. 398, eff. 3–1–89; am. (3) (intro.), (6), (7), r. (3) (a), renum. (3) (b) to (f) to be (3) (a) to (e) and am. (3) (a), Register, August, 1997, No. 500, eff. 9–1–97; CR 07–111; am. (title), (1) (intro.), (2), (3) (intro.), (4) (title) and (a), r. (4) (b), (e) 1. and (5) to (7), renum. (4) (e) (intro.), 2. and 3. to be (4) (b) and am. (4) (b) (intro.), cr. (4) (e) and (5) to (9) Register September 2010 No. 657, eff. 10–1–10; correction in (8) (c) made under s. 13.92 (4) (b) 7., Stats., Register September 2010 No. 657.

NR 102.05 Application of standards. (1) ANTIDE-GRADATION. (a) No waters of the state shall be lowered in quality unless it has been affirmatively demonstrated to the department that such a change is justified as a result of necessary economic and social development, provided that no new or increased effluent interferes with or becomes injurious to any assigned uses made of or presently possible in such waters.

(b) *Classification system*. For the purposes of this subsection, all surface waters of the state, or portions thereof, shall be classified as one of the following:

1. Outstanding resource waters as listed in s. NR 102.10,

2. Exceptional resource waters as listed in s. NR 102.11,

3. Great Lakes system waters as listed in s. NR 102.12 (1),

4. Fish and aquatic life waters as described in s. NR 102.13,

5. Waters listed in tables 3 through 8 in ss. NR 104.05 to 104.10.

 Published under s. 35.93, Stats. Updated on the first day of each month. Entire code is always current. The Register date on each page

 Register November 2010 No. 659
 is the date the chapter was last published.

or

(2) STREAMFLOW. Water quality standards will not be maintained under all natural occurrences of flow, temperature, or other water quality characteristics. The determination of water quality based effluent limitations or other management practices shall be based upon the following conditions except as provided in ch. NR 106 for toxic and organoleptic substances and whole effluent toxicity:

(a) The average minimum 7-day low streamflow which occurs once in 10 years (7-day Q_{10}); or,

(b) In the case of dissolved oxygen and wherever sufficient data on streamflow and temperature are available, by application of a 0.274% level of nonattainment. This is equivalent to an expected nonattainment of the dissolved oxygen criterion of one day per year.

(3) MIXING ZONES. Water quality standards shall be met at every point outside of a mixing zone. The size of the mixing zone shall be based on such factors as effluent quality and quantity, available dilution, temperature, current, type of outfall, channel configuration and restrictions to fish movement. For toxic and organoleptic substances with water quality criteria or secondary values specified in or developed pursuant to chs. NR 102 and 105, allowable dilution shall be determined as specified in ch. NR 106 in addition to the requirements specified in this subsection. As a guide to the delineation of a mixing zone, the following shall be taken into consideration:

(a) Limiting mixing zones to as small an area as practicable, and conforming to the time exposure responses of aquatic life.

(b) Providing passageways for fish and other mobile aquatic organisms.

(c) Where possible, mixing zones being no larger than 25% of the cross–sectional area or volume of flow of a flowing water body and not extending more than 50% of the width.

(d) Final acute criteria and secondary values specified in or developed pursuant to s. NR 105.05 for the fish and aquatic life subcategory for which the receiving water is classified not being exceeded at any point in the mixing zone.

(e) Mixing zones not exceeding 10% of an inland lake's total surface area.

(f) Mixing zones not adversely impacting spawning or nursery areas, migratory routes, nor mouths of tributary streams.

(g) Mixing zones not overlapping, but where they do, taking measures to prevent adverse synergistic effects.

(h) Restricting the pH to values greater than 4.0 s.u. and to values less than 11.0 s.u. at any point in the mixing zone for the protection of indigenous fish and fish food organisms.

(5) RESOURCE MANAGEMENT EXEMPTIONS. Application of chemicals for water resource management purposes in accordance with statutory provisions is not subject to the requirements of the standards except in case of water used for public water supply.

(6) ANALYTICAL PROCEDURES. (a) The criteria in the Radiation Protection Code, s. DHS 157.44, shall apply to the disposal and permissible concentrations of radioactive substances.

(b) Methods used for analysis of samples shall be as set forth in ch. NR 219 unless alternative methods are specified by the department.

History: Cr. Register, September, 1973, No. 213, eff. 10-1-73; renum. (5) and (6) to be (6) and (7), cr. (5), Register, July, 1975, No. 235, eff. 8-1-75; r. and recr. (3), Register, August, 1981, No. 308, eff. 9-1-81; correction in (7) made under s. 13.93 (2m) (b) 7., Stats., cr. (4) (h), Register, September, 1984, No. 345, eff. 10-1-84; renum. from NR 102.03, r. (1), cr. (1) (b), renum. (2) to (7) to be (1) (a) to (6) and am. (2), (3) (intro.) and (d) and (6), Register, February, 1989, No. 398, eff. 3-1-89; am. (1) (b) 3., (3) (intro.) and (d), Register, August, 1997, No. 500, eff. 9-1-97; correction in (6) (a) made under s. 13.92 (4) (b) 7., Stats., Register July 2010 No. 655; CR 07–111; am. (3) (intro.), (b), (c), (e) and (f), r. (4) Register September 2010 No. 657, eff. 10-1-10.

History: Cr. Register, July, 1975, No. 235, eff. 8–1–75; am. Register, October, 1986, No. 370, eff. 11–1–86; renum. from NR 102.04, Register, February, 1989, No. 398, eff. 3–1–89; am. Register, November, 1992, No. 443, eff. 12–1–92.

NR 102.06 Phosphorus. (1) GENERAL. This section identifies the water quality criteria for total phosphorus that shall be met in surface waters.

(2) DEFINITIONS. In this section:

(a) "Drainage lake" means a lake with an outlet stream that continually flows under average summer conditions based on the past 30 years.

(b) "Ephemeral stream" means a channel or stream that only carries water for a few days during and after a rainfall or snowmelt event and does not exhibit a flow during other periods, and includes, but is not limited to, grassed waterways, grassed swales, and areas of channelized flow as defined in s. NR 243.03 (7).

(c) "Mean water residence time" means the amount of time that a volume of water entering a waterbody will reside in that waterbody.

(d) "Nearshore waters" means all waters of Lake Michigan or Lake Superior within the jurisdiction of the State of Wisconsin in the zone extending from the shore to a depth of 10 meters, based on the long-term mean elevation for Lake Superior of 183.4 meters (601.7 feet) and for Lake Michigan of 176.5 meters (579.0 feet).

(e) "Open waters" mean all waters of Lake Michigan or Lake Superior within the jurisdiction of the State of Wisconsin with depths greater than nearshore waters.

(f) "Reservoir" means a waterbody with a constructed outlet structure intended to impound water and raise the depth of the water by more than two times relative to the conditions prior to construction of the dam, and that has a mean water residence time of 14 days or more under summer mean flow conditions using information collected over or derived for a 30 year period.

(fm) "Seepage lake" means a lake that does not have an outlet stream that continually flows under average summer conditions based on the past 30 years.

(g) "Stratified lake or reservoir" means a lake or reservoir where either of the following equations results in a value of greater than 3.8:

Maximum Depth (meters) — 0.1

Log₁₀Lake Area (hectares)

Maximum Depth (feet)* 0.305 - 0.1

 $Log_{10}Lake Area (acres) * 0.405$

(i) "Stratified two-story fishery lake" means a stratified lake which has supported a cold water fishery in its lower depths within the last 50 years.

(j) "Total phosphorus" means all of the phosphorus in a water sample analyzed using the methods identified under the provisions of s. NR 219.04 (1).

(3) STREAMS AND RIVERS. To protect the fish and aquatic life uses established in s. NR 102.04 (3) on rivers and streams that generally exhibit unidirectional flow, total phosphorus criteria are established as follows:

(a) A total phosphorus criterion of 100 ug/L is established for the following rivers or other unidirectional flowing waters:

1. Apple River from the outlet of the Apple River Flowage in Amery to the St. Croix River, excluding Black Brook Flowage.

2. Bad River from confluence with the Marengo River within the Bad River Indian Reservation downstream to Lake Superior.

3. Baraboo River from highway 58 in La Valle to the Wisconsin River.

4. Bark River from confluence with Scuppernong River near Hebron to the Rock River.

5. Black River from confluence with Cunningham Creek near Neillsville to Mississippi River, excluding Lake Arbutus.

6. Brule River from state highway 55 in Forest County downstream to Menominee River.

7. Buffalo River from confluence with Harvey Creek near Mondovi to Mississippi River.

Published under s. 35.93, Stats. Updated on the first day of each month. Entire code is always current. The Register date on each page is the date the chapter was last published.

8. Chippewa River from Lake Chippewa in Sawyer County to Mississippi River, excluding Holcombe Flowage, Cornell Flowage, Old Abe Lake, Lake Wissota and Dells Pond.

9. Crawfish River from confluence with Beaver Dam River to Rock River.

10. East Branch Pecatonica River from confluence with Apple Branch Creek near Argyle to Pecatonica River.

11. Eau Claire River from confluence with Bridge Creek near Augusta to Chippewa River, excluding Altoona Lake.

12. Embarrass River from confluence with Pigeon River near Clintonville to Wolf River.

13. Flambeau River from outlet of Turtle-Flambeau Flowage in Iron County to Chippewa River, excluding Pixley Flowage, Crowley Flowage and Dairyland Flowage.

14. Fox River from outlet of Lake Puckaway near Princeton to Green Bay, excluding Lake Butte des Morts and Lake Winnebago.

15. Fox River from confluence with Mukwonago River near Mukwonago to state line, excluding Tichigan Lake.

16. Grant River from confluence with Rattlesnake Creek near Beetown to Mississippi River.

17. Jump River from confluence with the North Fork and the South Fork of the Jump rivers in Price County to Holcombe Flowage.

18. Kickapoo River from confluence with Weister Creek near La Farge to Wisconsin River.

19. Kinnickinnic River from confluence with Wilson Park Creek in Milwaukee to Milwaukee River.

20. La Crosse River from confluence with Fish Creek near Bangor to Mississippi River, excluding Neshonoc Lake.

21. Lemonweir River from outlet of New Lisbon Lake in New Lisbon to Wisconsin River, excluding Decorah Lake.

22. Little Wolf River from confluence with South Branch Little Wolf River near Royalton to Wolf River.

23. Manitowoc River from confluence of North Branch and South Branch Manitowoc rivers to the opening at the end of the piers at Lake Michigan.

24. Menominee River from confluence with Brule River to the opening at the end of the piers at Green Bay.

25. Menomonee River from confluence with Little Menomonee River to Milwaukee River.

26. Milwaukee River from confluence with Cedar Creek downstream to the openings of the breakwaters at Lake Michigan.

27. Mississippi River main channels and side channels.

28. Namekagon River from outlet of Trego Lake near Trego to St. Croix River.

29. Oconto River from confluence with Peshtigo Brook to the opening at the end of the piers at Green Bay.

30. Pecatonica River from confluence with Vinegar Branch near Darlington to state line.

31. Pelican River from confluence with Slaughterhouse Creek near Rhinelander to Wisconsin River.

32. Peshtigo River from confluence with Brandywine Creek downstream to Green Bay, excluding Cauldron Falls Flowage and High Falls Flowage.

33. Pine River from confluence with Popple River in Florence County to Menominee River, excluding Pine River Flowage.

34. Red Cedar River from confluence with Brill River to Chippewa River, excluding Rice Lake, Tainter Lake and Lake Menomin.

35. Rock River from outlet of Sinissippi Lake downstream to the state line, excluding Lake Koshkonong.

36. St. Croix River from confluence with Namekagon River downstream to Mississippi River, excluding Lake St. Croix near Hudson.

37. St. Louis River from state line to the opening between Minnesota Point and Wisconsin Point at Lake Superior.

38. Sheboygan River from outlet of Sheboygan Marsh to the opening at the end of the piers at Lake Michigan.

39. South Fork of Flambeau River from state highway 13 near Fifield to Flambeau River.

40. Sugar River from outlet of Albany Lake to state line, excluding Decatur Lake.

41. Tomahawk River from outlet of Willow Reservoir to Lake Nokomis.

42. Trempealeau River from confluence with Pigeon Creek near Whitehall to Mississippi River.

43. White River from outlet of White River Flowage in Ashland County to Bad River.

44. Wisconsin River from the Rhinelander Dam to Mississippi River, excluding Lake Alice, Lake Mohawksin, Alexander Lake, Lake Wausau, Mosinee Flowage, Lake Dubay, Wisconsin River Flowage, Biron Flowage, Petenwell Flowage, Castle Rock Flowage and Lake Wisconsin.

45. Wolf River from confluence with Hunting Creek in Langlade County to Lake Poygan.

46. Yahara River from outlet of Lake Kegonsa to Rock River.

(b) Except as provided in subs. (6) and (7), all other surface waters generally exhibiting unidirectional flow that are not listed in par. (a) are considered streams and shall meet a total phosphorus criterion of 75 ug/L.

(4) RESERVOIRS AND LAKES. Except as provided in sub. (1), to protect fish and aquatic life uses established in s. NR 102.04 (3) and recreational uses established in s. NR 102.04 (5), total phosphorus criteria are established for reservoirs and lakes, as follows:

(a) For stratified reservoirs, total phosphorus criterion is 30 ug/ L. For reservoirs that are not stratified, total phosphorus criterion is 40 ug/L.

(b) For the following lakes that do not exhibit unidirectional flow, the following total phosphorus criteria are established:

1. For stratified, two-story fishery lakes, 15 ug/L.

2. For lakes that are both drainage and stratified lakes, 30 ug/L.

3. For lakes that are drainage lakes, but are not stratified lakes, 40 ug/L.

For lakes that are both seepage and stratified lakes, 20 ug/L.

5. For lakes that are seepage lakes, but are not stratified lakes, 40 ug/L.

(c) Waters impounded on rivers or streams that don't meet the definition of reservoir in this section shall meet the river and stream criterion in sub. (3) that applies to the primary stream or river entering the impounded water.

(5) GREAT LAKES. To protect fish and aquatic life uses established in s. NR 102.04 (3) and recreational uses established in s. NR 102.04 (5) on the Great Lakes, total phosphorus criteria are established as follows:

(a) For both open and nearshore waters of Lake Superior, 5 ug/ L.

(b) For both open and nearshore waters of Lake Michigan, excluding waters identified in par. (c), 7 ug/L.

(c) For the portion of Green Bay from the mouth of the Fox River to a line from Long Tail Point to Point au Sable, the water clarity and other phosphorus-related conditions that are suitable for support of a diverse biological community, including a robust and sustainable area of submersed aquatic vegetation in shallow water areas.

(6) EXCLUSIONS. The following waters are excluded from subs. (3) (b), (4) and (5):

(a) Ephemeral streams.

(b) Lakes and reservoirs of less than 5 acres in surface area.

(c) Wetlands, including bogs.

Published under s. 35.93, Stats. Updated on the first day of each month. Entire code is always current. The Register date on each page

(d) Waters identified as limited aquatic life waters in ch. NR 104. Limited aquatic life waters are those subject to the criteria in s. NR 104.02 (3) (b) (2).

(7) SITE-SPECIFIC CRITERIA. A criterion contained within this section may be modified by rule for a specific surface water segment or waterbody. A site-specific criterion may be adopted in place of the generally applicable criteria in this section where sitespecific data and analysis using scientifically defensible methods and sound scientific rationale demonstrate a different criterion is protective of the designated use of the specific surface water segment or waterbody.

Note: Reservoirs, two-story fishery lakes and water bodies with high natural background phosphorus concentrations are the most appropriate water bodies for site-specific criteria.

Note: When placing a water body on the 303 (d) list as impaired for phosphorus, the department considers factors such as frequency and duration of criterion exceedances, the time of year of the exceedance and the magnitude of each exceedance above the applicable criterion. The department may also choose to consider other factors such as the concentration of suspended algae and floating plants; density of benthic algae; macrophyte density; minimum and daily change in dissolved oxygen levels due to diurnal swings; water clarity; and natural background phosphorus concentrations. The 303 (d) list is a list of impaired waters established by the department and approved by US EPA pursuant to 33 USC 1313 (d) (1) (A) and 40 CFR 130.7. Information on frequency and duration is contained in the department's impaired waters listing guidance, "Wisconsin Consolidated Assessment and Listing Methodology

History: Cr. Register, July, 1975, No. 235, eff. 8-1-75; am. Register, October, 1986, No. 370, eff. 11–1–86; renum. from NR 102.04, Register, February, 1989, No. 398, eff. 3–1–89; am. Register, November, 1992, No. 443, eff. 12–1–92; CR 10–035: r. and recr. Register November 2010 No. 659, eff. 12–1–10; renumbering of (2) (fm) made under s. 13.92 (4) (b) 1., Stats., Register November 2010 No. 659

NR 102.07 Lake Michigan and Lake Superior thermal standards. History: Cr. Register, September, 1973, No. 213, eff. 10-1-73; r. and recr. Register, July, 19 No. 235, eff. 8-1-75; renum. from NR 102.05, Register, February, 1989, No. 398, eff. 3-1-89; CR 07-111: r. Register September 2010 No. 657, eff. 10-1-10.

NR 102.08 Mississippi river thermal standards. History: Cr. Register, July, 1975, No. 235, eff. 8–1–75; renum. from NR 102.06, Register, February, 1989, No. 398, eff. 3-1-89; CR 07-111: r. Register September 2010 No. 657, eff. 10-1-10.

NR 102.09 Review of thermal standards. History: Cr. Register, July, 1975, No. 235, eff. 8–1–75; am. Register, February, 1977, No. 254, eff. 3–1–77; renum. from NR 102.07, Register, February, 1989, No. 398, eff. 3–1–89; CR 07–111: r. Register September 2010 No. 657, eff. 10-1-10.

NR 102.10 Outstanding resource waters. (1) The following surface waters are designated as outstanding resource waters:

(a) National wild and scenic rivers. All rivers designated under the national wild and scenic rivers act, as amended, 16 USC 1271 to 1287, except those portions flowing through Indian reservations, including:

1. St. Croix river between the northern boundary of the Hudson city limits and the St. Croix flowage dam in Douglas county except that the portion of the St. Croix river from the northern boundary of the St. Croix Falls city limits to a distance one mile below the STH 243 bridge at Osceola shall be classified exceptional resource waters under s. NR 102.11.

2. Namekagon river between its confluence with the St. Croix river and the outlet of Lake Namekagon in Bayfield county.

(b) State wild and scenic rivers. All state wild and scenic rivers designated under s. 30.26, Stats., including:

1. Pike river and its headwater branches in Marinette county.

2. Pine river and its headwater branches in Florence and Forest counties.

3. Popple River and its headwater branches in Florence and Forest counties.

4. The portion of the Brunsweiler River (Martin Hanson Wild River) from the point in Ashland County at which it leaves T44N R4W S22 QSW QQSW downstream to the point at which it crosses the boundary of the Chequamegon-Nicolet National Forest at T45N R4W S22 QNW.

5. Portions of the Totagatic River in Bayfield, Sawyer, Washburn, Douglas, and Burnett Counties as described in the following table:

SEG 1: From the outlet of Totogatic Lake located in Bayfield County to the upstream end of Nelson Lake at the southern edge of the walleye spawning refuge located in Sawyer County.

SEG 2: From a point 500 feet below the dam in the Totogatic Wildlife Area located in Washburn County to the upstream end of the Colton Flowage located in Washburn County.

SEG 3: From a point 500 feet below the dam that forms the Colton Flowage located in Washburn County to the point where the river crosses the Washburn-Douglas County line immediately above the upstream end of the Minong Flowage.

SEG 4: From the bridge on CTH "I" that crosses the river located in Washburn County to the confluence of the river with the Namekagon River located in Burnett County.

Note: Section NR 302.02 (1) contains a detailed description of the extent of the Pike, Pine, and Popple river systems designated as Wild Rivers.

(c) Wolf river upstream of the northern Menominee county line

(d) The following Class I trout waters:

1. Adams county — Big Roche-a-Cri creek

2. Barron county - Yellow river

3. Bayfield county — Flag river, Sioux river

4. Burnett county - North Fork Clam river, South Fork Clam river

Chippewa county — Duncan creek, Elk creek, McCann creek

6. Dane county — Black Earth creek above the easternmost CTY KP crossing

7. Door county - Logan creek

8. Douglas county - Bois Brule river and its tributaries including the waters of Lake Superior within a 1/4 mile semi-circular arc centered at the middle of the river mouth

Dunn county — Elk creek

10. Florence county - Brule river including Montagne creek and Riley creek tributaries; tributaries to the Pine-Popple rivers including Chipmunk, Cody, Haley, Haymarsh, Lamon Tangue, Lepage, Lunds, Martin, Olson, Patten, Pine, Riley, Rock, Simpson, Seven Mile, Wakefield and Woods creeks; Little Popple river (T38N R19E S3)

11. Forest county — Brule river

13. Kewaunee county — Little Scarboro creek

14. Langlade county - Clearwater creek, Drew creek, Evergreen river, South Branch Oconto river

15. Lincoln county - Center fork New Wood creek, Little Pine creek, Prairie river

16. Marathon county - Holt creek, Spranger creek, Plover river

17. Marinette county - Cedarville creek, Otter creek, Holmes creek, East Thunder creek, North fork Thunder river, Eagle creek, Little Eagle creek, Plumadore creek, Meadow brook, Upper Middle Inlet creek, Middle Inlet creek, Wausaukee river, Little Wausaukee creek, Coldwater brook, Medicine brook, South Branch Miscauno creek, Miscauno creek, Swede John creek, South Branch Pemebonwon river, Spikehorn creek, Silver creek, Little Silver creek, Sullivan creek; tributaries to the Pike river including Little South Branch Pike river, Camp D creek, Camp F creek, Camp 9 creek, Cole creek, Glen creek, Harvey creek, North Branch Harvey creek, South Branch Harvey creek, Hemlock creek, Holloway creek, K.C. creek, Little Harvey creek, Lost creek, MacIntire creek, Phillips creek, Sackerson creek, Shinns branch, Sidney creek, Smeesters creek, Springdale brook, Whiskey creek

18. Marquette county — Chaffee creek, Lawrence creek, Tagatz creek

Monroe county — Rullands Coulee creek

Published under s. 35.93, Stats. Updated on the first day of each month. Entire code is always current. The Register date on each page is the date the chapter was last published.

Published under s. 35.93, Wis. Stats., by the Legislative Reference Bureau.

NR 102.10

WISCONSIN ADMINISTRATIVE CODE

20. Oconto con ond South Branch (Pond creek	unty — First South Br Dconto river, South Br	anch Oconto river, Sec- anch Oconto river, Hills	1h.	Ashland & Bay- field	Marengo River	SEG 1: Origin to Inlet of Marengo Lake
21. Polk county — Clam river, McKenzie creek						SEG 2: Outlet of
22. Portage county — Emmons creek, Radley creek, Sannes creek, Tomorrow river, Nace (Trout) creek						Marengo Lake to Bad River Indian
23. Richland c	23. Richland county — Camp creek					Reservation
24. Sheboygar	1 county — Nichols ci	reek				
25. St. Croix c	ounty — Kinnickinni	c river above STH "35"	1p.	Ashland & Saw-	E. Fork Chippewa River	SEG1: 142N RTE S17/18 Line to
26. Vernon cou creek, Timber Cou	inty — Rullands Coul lee creek	ee creek, Spring Coulee		yer		Ashland County Highway "N" in
27. Vilas coun	ty — Deerskin river, I	Plum creek				Glidden SEC 6: Outlet of
Slyke creek	county — Bluff creek,	Potawatolili creek, vali				Barker Lake to
29. Waupaca c	ounty — Emmons cre	eek. Griffin creek. Jack-				Confluence with
son creek, Leers c	reek, Peterson creek,	, Radley creek, Sannes				Chippewa Flowage
creek, Spaulding cr river (North Branch	eek, Trout creek, Whit h Little Wolf river)	comb creek, Little Wolf				SEG 3: Outlet of Pelican Lake to
30. Waushara of Redgranite, Mec	county — Chaffee cre can river north of Ricl	eek, Willow creek north nford, Little Pine creek,				Lake
(a) The following	e river	1 01				SEG 4: Outlet of Blaisdell Lake to
(e) The followi	ng Class II trout water	18.				Inlet of Hunter Lake
2 Burnett cou	nty — Tenlow IIver nty — North Fork Cla	om river				
 Burnett court Forest court 	ty — Brule river. Pesl	ntigo river				SEG 5: Outlet of Hunter Lake to Inlet of Barker Lake
4. Grant count	y — Big Green river,	Castle Rock creek				
5. Marinette co	ounty — Peshtigo rive	er				
6. Polk county	– McKenzie creek		14	D	Engle Creat	Class L & II Dan
7. Vilas county	y — Plum creek		Π.	Darron	Engle Creek	tions
(f) The following cold or warm water streams and rivers or por- tions thereof:					Hickey Creek	Class I & II Por- tions
1d. Ashland	Bad River	SEG 1: Origin to Outfall in Mellen at NW ¹ / ₄ SW ¹ / ₄ S6			Red Cedar River	SEG 1: Outlet of Red Cedar Lake to
		T44N R2W				Inlet of Rice Lake
	Brunsweiler River	SEG 1: Origin to Inlet of Spider			Rock Creek	SEG 2: All within Barron County
		Lake SEG 2: Outlet of Moquah Lake to origin of Wild River designation under par. (b) 4. at T44N R4W S22 SW ¹ / ₄ of SW ¹ / ₄			Upper Pine Creek	Above Dallas Flowage
			2.	Bayfield	Bark River	All-Class I Por- tions including the waters of Lake Superior within a ¹ / ₄ mile semi-
		SEG 3: All por- tions included as Wild River under				tered at the middle of the river mouth
		par. (b) 4.			Big Brook	All
		SEG 4: End of Wild River seg- ment under par. (b) 4. at the boundary of the Chequame- gon-Nicolet National Forest (T45N R4W S22 ¼ NW) to the Bad			Cranberry River & Tribs.	All–Class I Por- tion including the waters of Lake Superior within a ¹ / ₄ mile semi–cir- cular arc centered at the middle of the river mouth.
		River Indian Res- ervation Boundary			East Fork Iron River & Tribs.	All-Class I Portion

Published under s. 35.93, Stats. Updated on the first day of each month. Entire code is always current. The Register date on each page

DEPARTMENT OF NATURAL RESOURCES

East Fork White River	All-Class I Portion	2d.	Bayfield & Ash- land	Beartrap Creek	SEG 1: Origin to Bad River Indian Reservation
Eighteen Mile Cr. & Tribs.	All–Class I Portion		iana		Boundary
Fish Creek (Main)	All including the waters of Lake Superior within a ¹ / ₄ mile semi-cir- gular are contered	2h.	Bayfield, Ashland & Saw- yer	West Fork Chip- pewa River	SEG 1: Origin (Outlet of Chip- pewa Lake) to Inlet of Day Lake
Long Lake Branch	at the middle of the river mouth.				SEG 2: Outlet of Day Lake to Inlet of Upper Clam
& Tribs.	Drummond Lake to White River				Lake SEG 3: Outlet of
	All–Class I Por- tions				Upper Clam Lake to Inlet of Lower Clam Lake
No. Fork Fish Creek & Tribs.	All–Class I & II Portions				SEG 4: Outlet of
Onion River & Tribs.	All–Class I Por- tions including the waters of Lake				Lower Clam Lake to Inlet of Cattail Lake
	Superior within a $\frac{1}{4}$ mile semi-cir- cular arc centered at the middle of the river mouth.				SEG 5: Outlet of Cattail Lake to Inlet of Meadow Lake
Pikes Creek & Tribs.	All–Class I Portion including the waters of Lake Superior within a				SEG 6: Outlet of Meadow Lake to Inlet of Partridge Crop Lake
	¹ / ₄ mile semi-cir- cular arc centered at the middle of the river mouth.				SEG 7: Outlet of Partridge Crop Lake to Inlet of Moose Lake
Sioux River & Tribs.	All–Class I & II Portions including the waters of Lake Superior within a ¹ / ₄ mile semi–cir-				SEG 8: Outlet of Moose Lake to Sawyer County Highway "B"
	cular arc centered at the middle of the river mouth.	2p.	Bayfield, Sawyer, Wash-	Totagatic River	SEG 1: All portions included as Wild River
So. Fork White River	All-Class I Portion		burn, Douglas		under SEG 1 of par. (b) 5.
Thompson Creek	All-Class I Portion		& Burnett		
Twenty Mile Creek	All–Class I & II Portions				SEG 2: All
White River	All-Class I Portion				as Wild River
Whittlesey Creek & Tribs.	All–Class I Por- tions including the waters of Lake Superior within a ¹ / ₄ mile semi–cir- cular arc centered at the middle of the since month				under SEG 2 of par. (b) 5., and the 500 feet immedi- ately downstream of the dam in the Totagatic Wildlife Area in Washburn

NR 102.10

WISCONSIN ADMINISTRATIVE CODE

			SEG 3: All por- tions included as Wild River under SEG 3 of par. (b) 5., the 500 feet immediately downstream of the dam that forms the Colton Flowage, and from the end of the Wild River designation at the Douglas/Washburn County line to the inlet of Minong Flowage SEG 4: All portions included	4. 5. 5m.	Dane Door Douglas	Mt. Vernon Creek Mink River Amnicon River	All–Class I Portion All SEG 1: Origin (Outlet of Amni- con Lake) to Inlet of Lyman Lake SEG 2: Outlet of Lyman Lake to mouth at Lake Superior, including the waters of Lake Superior within a ¹ /4 mile semi–cir- cular arc centered at the middle of the river mouth.
			as Wild River under SEG 4 of			Spruce River	All
3.	Burnett	North Fork Clam River	par. (b) 5. County Highway "H" to Confluence with Clam River			St. Croix River	SEG 1: Outlet of Upper St. Croix Lake to Inlet of St. Croix Flowage
		Tributaries to the	All-Class I & II	6.	Forest	Allen Creek	All
		N. & S. Forks of the Clam River	Portions			Brule Creek	All
						Elvoy Creek	All
						Jones Creek	Class I & II por- tions
						Otter Creek (T37N R14E S23, North Otter Creek)	All
				6m.	Forest & Langlade	Swamp Creek	SEG 1: Outlet of Lake Lucerne to Mole Lake Indian Reservation Boundary
							SEG 3: All below Mole Lake Indian Reservation Boundary to Con- fluence of Wolf River
				7.	Grant	Little Green River	All
				7m.	Iron & Ashland	Tyler Forks	SEG 1: Origin in Iron County to Bad River Indian Reservation East- ern Boundary in Ashland County
							SEG 3: From Bad River Indian Res- ervation Southern Boundary to Con- fluence with Bad River
						Potato River	SEG 1: Origin to Bad River Indian Reservation Boundary

DEPARTMENT OF NATURAL RESOURCES

8.	Iron,	Flambeau River	SEG 1: Turtle-	17.	Richland	Elk Creek	All
	Ashland & Price		Flambeau Flowage (Outlet @ Turtle– Flambeau Dam) to	18.	Rusk	Devils Creek	All–Class I & II Portions
0	LaCrossa	Davida Cardan	Inlet of Upper Park Falls Flowage			Soft Maple Creek	SEG 1: Origin to Rusk County Highway "F"
9.	Laciosse	Creek	All			So. Fork Main	Class I & II Por-
10.	Langlade	Elton Creek	Class I Portion			Creek	tions (T35N R3W
		Evergreen Creek	All				T34N R4W S11)
		Mayking Creek	All			Swift Creek	Outlet of Island
		Michelson Creek	All				Lake to Inlet of
		Mid Branch Embarrass River	Class I Portion	19.	Sauk	Otter Creek	Fireside Lake
10m.	Lincoln	New Wood River	Origin (T33N R4E S14) to Conflu- ence with Wiscon- sin River	17.	Suuk		to southern section line of T11N R6E S33
11.	Marathon	Falstad Creek	Class II Portion			Parfrey's Glen	From headwaters to CTH DL
		So. Branch Embar- rass River	Class I Portion	20.	Sawyer	Benson Creek	All-Class I Portion
12.	Marinette	No. Branch Beaver Creek	Entire River & tributaries			Couderay River	SEG 1: Origin at Outlet of Billy Boy Elowage to Inlet of
13.	Oneida	Noisy Creek	Class II Portion				Grimh Flowage
		Squirrel River	Outlet of Squirrel Lake to Conflu- ence with Toma- hawk River				(Including Waters within Lac Courte Oreilles Indian Reservation)
		Tomahawk River	SEG 2: Outlet of			Eddy Creek	All-Class I Portion
			Willow Flowage Dam to Inlet of			Grindstone Creek	All-Class I Portion
14.	Pierce	Kinnickinnic River	From Powell Dam to St. Croix River			Knuteson Creek	Wise Lake to Inlet of Knuteson Lake
15.	Polk	Sand Creek & Tribs	All–Class I & II Portions				SEG 2: Outlet of Knuteson Lake to
15e.	Polk & Burnett	Clam River	SEG 1: Outlet of Clam Falls Flow-				tek
			age to Inlet of Clam Lake			Little Weirgor Creek & Tribs	All–Class I & II Portions
			SEG 2: Outlet of			McDermott Brook	All
			to Section Line @			Mosquito Brook	All-Class I Portion
			T39N R16W S21/22			Teal River	Outlet of Teal Lake to Conflu-
15m.	Price Elk River SEG 1: Headwa- ters to Inlet of Musser Lake				ence with West Fork Chippewa River		
	Price & Lincoln	Price & Spirit River Outlet of Spirit Lincoln Lake to Inlet of Spirit River Flow-	Outlet of Spirit Lake to Inlet of Spirit River Flow-	20m.	Sawyer & Rusk	Thornapple River	SEG 1: Origin to Rusk County Highway "J"
16.	Price, Rusk & Sawyer	So. Fork Flambeau River	age All–Round L. Dam downstream to Jxn with No. Fork Flambeau R.			Chippewa River	SEG 1: Dam at Chippewa Flowage to Inlet of Radis- son Flowage (T38N R7W S13)

 Published under s. 35.93, Stats. Updated on the first day of each month. Entire code is always current. The Register date on each page

 is the date the chapter was last published.

 Register November 2010 No. 659
Published under s. 35.93, Wis. Stats., by the Legislative Reference Bureau.

NR 102.10

WISCONSIN ADMINISTRATIVE CODE

21.	Shawano	Middle Br. Embar- rass R.	Origin to but not including Homme	23.	Wash- burn	Beaver Brook	All-Class I Portion		
		No. Br. Embarrass	Origin to CTH J			Sawyer Creek	All–Class I & II Portions		
		R. So. Br. Embarrass	Origin to but not			So. Fork Bean Brook	All-Class I Portion		
		R.	including Tigerton Pond			Stuntz Brook	Origin to Conflu- ence with Name-		
21g.	Taylor & Chip- pewa	Yellow River	SEG 1: Conflu- ence with South Fork Yellow River to Inlet of Chequa- megon Waters	23m.	Wash- burn & Barron	Bear Creek	kagon River SEG 1: Outlet of Kekegama Lake to Inlet of Bear Lake		
			Flowage SEG 2: Outlet of				SEG 2: Outlet of Bear Lake to Inlet at Stump Lake		
			Waters Flowage (at Miller Dam) to	(1n resour	n) (a) The ce waters:	following lakes are de	esignated as outstanding		
			State Highway 64/73	1.	Ashland	Bad River Slough Kakagon Slough			
21r.	Taylor & Price	Silver Creek	SEG 1: Origin to Westboro Sanitary District Outfall			Lake Superior within line of the islands w Island National Lake	n ¼ mile of the shore- ithin the Apostle eshore		
22.	Vilas	Allequash Creek & Springs	Class I & II Por- tions	2.	Barron	Bear Lake (T36N R Washburn County)	12W S2; also in		
		Brule Creek	All			Red Cedar Lake			
		East Br. Blackjack Cr.	All			(also in Washburn C Sand Lake	county)		
		Elvoy Creek &	Class I & II Por-			Silver Lake			
		Springs	tions	3.	Bayfield	Bark Bay Slough			
		Manitowish River	SEG 1: Adjacent			Diamond Lake			
			Downstream to			Lake Owen			
			Inlet of Boulder Lake			Lake Superior within line of the islands w	n ¼ mile of the shore- ithin the Apostle		
			SEG 2: Outlet of Boulder Lake to Inlet of Island			Lower Eau Claire Lake (also in Douglas County)			
			Lake			Middle Eau Claire Lake			
		Mishonagon Creek	Class I & II Por-			Namekagon Lake	(Dika Milliaant		
		Siphon Creek	All			Buskey Bay, Hart, T Flynn and Hildur La	win Bear, Eagle,		
		Spring Meadow	Class I Portion			Star Lake			
		Tamarack Creek	A11			Upper Eau Claire La	ake		
		Trout River	SEG 1: Outlet of	4.	Burnett	Big Sand Lake			
		Hout River	Trout Lake to Lac Du Flambeau			McKenzie Lake (als County)	o in Washburn		
			Indian Reservation Eastern Boundary			Middle McKenzie Lake (also in Washburn County)			
22m.	Vilas &	Wisconsin River	SEG 1: Origin			Sand Lake (T40N R	15W S25)		
	Oneida		(Outlet of Lac	4m.	Chippewa	Chain Lake (also in	Rusk County)		
			Inlet of Water-	5.	Columbia	Crystal Lake (T12N R10E S1)			
			smeet Lake	6.	Douglas	Bardon Lake (White	efish Lake)		
						Bond Lake			
						Lake Nebagamon			
						Lower Eau Claire La County)	ake (also in Bayfield		
						St. Croix (Gordon) I	Flowage		
						Upper St. Croix Lak	e		

DEPARTMENT OF NATURAL RESOURCES

7.	Florence	Edith Lake			Smith Lake					
		Keyes Lake			Spider Lake					
		Lost Lake			Teal Lake					
		Perch Lake			Whitefish Lake					
		Riley Lake, South	18.	Vilas	Black Oak Lake					
8.	Forest	Butternut Lake			Crab Lake					
		Franklin Lake			Crystal Lake (T41N R7E S27)					
		Lucerne Lake (Stone)			Lac Vieux Desert					
		Metonga Lake			North Twin Lake					
9.	Iron	Catherine Lake			Pallette Lake (Clear)					
		Cedar Lake			Partridge Lake					
		Gile Flowage			Plum Lake					
		Hewitt Lake			South Twin Lake					
		Owl Lake			Star Lake					
		Trude Lake			Stormy Lake					
		Turtle–Flambeau Flowage			Trout Lake					
9m.	Marinette	Caldron Falls Flowage (also in Oconto			White Sand Lake (T42N R7E S26)					
		County)	19.	Walworth	Lulu Lake					
10.	Oconto	Archibald Lake	20.	Washburn	Bass Lake (T40N R10W S17)					
		Bass Lake (T32N R15E S9)			Bear Lake (T36N R12W S2; also in					
		Bear Paw Lake			Barron County)					
		Boot Lake			Long Lake					
		Caldron Falls Flowage (also in Marinette			McKenzie Lake (also in Burnett County)					
		County) Chain Lake			Middle McKenzie Lake (also in Burnett County)					
11.	Oneida	Big Carr Lake			Red Cedar Lake (also in Barron County)					
		Clear Lake (T39N R7E S16)			Shell Lake					
		Little Tomahawk Lake			Stone Lake (T39N R10W S24)					
		Tomahawk Lake	21.	Waukesha	Spring Lake (T5N R18E S9)					
		Two Sisters Lake	22.	Waupaca	Graham Lake (Nelson)					
		Willow Flowage		•	North Lake					
12.	Polk	Pipe Lake	23.	Waushara	Gilbert Lake					
13.	Price	Cochran Lake			Lucerne Lake (Egans)					
		Tucker Lake			Norwegian Lake					
14.	Rusk	Bass Lake (T34N R9W S16)			Pine Lake (Springwater)					
		Fish Lake	(2)	The waters	in sub. (1) and (1m) may not be lowered in					
		Island Chains of Lakes (Chain {also in	quality	у.						
		Chippewa County}, Clear, McCann, and Island Lakes)	(3) delete	Surface wa d from, the	ters, or portions thereof, may be added to, or e outstanding resource waters designation					
		Three Lakes No. 1 (T36N R9W S25)	throug	the rule m	aking process under the provisions of ch. 227,					
15.	St. Croix	Bass Lake (T30N R19W S23)	Stats., Histo	orv: Cr. Registe	r, February, 1989, No. 398, eff. 3–1–89; am. (1) (d), cr. (1)					
		Perch Lake	(e), Reg	ister, July, 1989, 93 No. 449 eff	No. 403, eff. $8-1-89$; cr. (1) (f) and (1m), am. (2), Register, $6-1-93$; am. (1m) 6, 9, and 11, cr. (1m) 9m. Register Feb.					
16.	Sauk	Devils Lake	ruary, 1	998, No. 506, ef	f. 3–1–98; CR 05–089: am. (1) (d) 8., (f) 2., (1m) 1. and 3.					
17.	Sawyer	Barker Lake	am., cr.	(1) (f) 1d., 1h., 1	p., 2d., 2h., 2p., 5m., 6m., 7m., 10m., 15e., 15m., 15s., 20m.,					
		Blaisdell Lake	21g., 21 Novemb	r., 22m., and 2. per 2006 No. 611	3m., am. (1) (f) 3., 8. 13., 18., 20., 22., and 23., Register eff. 12–1–06: reprinted to correct error in (1) (d) 6. Register					
		Evergreen Lake	March 2	2008 No. 627; CI	R 09–123: am. (1) (b) 1., 2., (d) 10., 17., 22., 29., 30., (f) 1d., 22m. (1m) (a) 2 to 6 0m. 10. 13. 14. 17. 18. 20. cr. (1)					
		Grindstone Lake	(b) 3. to	5. and $(1m)$ (a)	4m. Register July 2010 No. 655, eff. 8–1–10; renumber of					
		Lac Court Oreilles	(1m) to	(1m) (a) made u	inder s. 13.92 (4) (b) 1., Stats., Register July 2010 No. 655.					
		Lake Chippewa (Chippewa Flowage)	NF	102.11 E	xceptional resource waters. (1) Surface					
		Nelson Lake	waters	which prov	ide valuable fisheries, hydrologically or geo-					
		Osgood Lake	logica	lly unique fe	atures, outstanding recreational opportunities,					
		Perch Lake (T42N R6W S25)	impac	e environme ted by hume	ntal settings, and which are not significantly an activities may be classified as exceptional					
		Round Lake (Big Round)	resour	ce waters. A	All the following surface waters are designated					
		Sand Lake	as exc	as exceptional resource waters:						

 Published under s. 35.93, Stats. Updated on the first day of each month. Entire code is always current. The Register date on each page

 is the date the chapter was last published.

 Register November 2010 No. 659

NR 102.11

(a) Class I trout waters listed in Wisconsin Trout Streams publication 6–3600 (80) that are not listed in s. NR 102.10.

(b) Other Class I trout waters:

1. Abraham Coulee creek in section 29, township 20 north, range 8 west from its headwaters to the upstream crossing of Oak Ridge Drive in Trempealeau county.

2. Bear creek originating in section 3, township 20 north, range 7 west in Trempealeau county.

3. Biser creek originating in section 19, township 12 north, range 3 west in Sauk county.

4. Bostwick creek from CTH M upstream 6.2 miles to the headwaters in LaCrosse county.

5. Bufton Hollow creek originating in section 19, township 12 north, range 2 west in Richland county.

6. Columbus creek originating in section 29, township 20 north, range 6 west in Jackson county.

7. Dutch creek originating in section 12, township 19 north, range 8 west in Trempealeau county.

8. Joe Coulee creek originating in section 1, township 20 north, range 7 west in Trempealeau county.

9. Little creek originating in section 21, township 20 north, range 6 west in Jackson county.

10. Marble creek originating in section 30, township 10 north, range 3 east in Sauk county.

11. Marshall creek originating in section 4, township 11 north, range 1 west in Richland county.

12. Martin creek originating in section 23, township 6 north, range 2 east in Iowa county.

13. South Bear creek originating in section 2, township 12 north, range 2 west in Richland county.

14. Spring brook downstream from CTH Y south of Antigo to its confluence with the Eau Claire river in Marathon county.

15. Spring Valley creek from the headwaters to SE 1/4, SE 1/4, section 33, township 16 north, range 1 east in Monroe county.

16. Unnamed creek 2–12 originating in section 36, township 20 north, range 7 west in Trempealeau county.

17. Unnamed creek 4–9 originating in section 4, township 11 north, range 1 west in Richland county.

18. Unnamed creek 5–6 originating in section 6, township 19 north, range 8 west in Trempealeau county.

19. Unnamed creek 7–4 originating in section 6, township 20 north, range 7 west in Trempealeau county.

20. Unnamed creek 8–9 originating in section 5, township 20 north, range 7 west in Trempealeau county.

21. Unnamed creek 8–14 originating in section 1, township 20 north, range 8 west in Trempealeau county.

22. Unnamed creek 9–13 originating in section 4, township 20 north, range 6 west in Jackson county.

23. Unnamed creek 10–8 originating in section 3, township 11 north, range 1 west in Richland county.

24. Unnamed creek 10–10 originating in section 14, township 20 north, range 6 west in Jackson county.

25. Unnamed creek 11–4 originating in section 1, township 20 north, range 7 west in Trempealeau county.

26. Unnamed creek 11–7 originating in section 2, township 20 north, range 7 west in Trempealeau county.

27. Unnamed creek 13–3a originating in section 19, township 20 north, range 6 west in Jackson county.

28. Unnamed creek 13–3b originating in section 6, township 20 north, range 6 west in Trempealeau county.

29. Unnamed creek 15–13 originating in section 1, township 20 north, range 8 west in Trempealeau county.

30. Unnamed creek 15–4 originating in section 3, township

20 north, range 6 west in Trempealeau county.

31. Unnamed creek 16–2 originating in section 22, township 20 north, range 6 west in Jackson county.

32. Unnamed creek 17–5 originating in SE 1/4, section 5, township 20 north, range 6 west in Jackson county.

33. Unnamed creek 24–3a originating in section 18, township 11 north, range 1 west in Richland county.

34. Unnamed creek 26–7 originating in section 2, township 21 north, range 5 west in Jackson county.

35. Unnamed creek 34–2 originating in section 17, township 20 north, range 8 west in Trempealeau county.

36. Unnamed creek 34–15 originating in section 27, township 20 north, range 7 west in Trempealeau county.

37. Unnamed stream originating in section 33, township 10 north, range 3 east in Sauk county.

38. Washington Coulee creek originating in section 29, township 20 north, range 6 west in Jackson county.

(c) The following Class II trout waters:

1. Ashland county — White river above the Bad River Indian reservation

2. Bayfield county — White river

3. Dane county — Mt. Vernon creek

4. Forest county — North Branch Oconto river

5. Grant county — Blue river

6. Iowa county — Blue river

7. Langlade county — Prairie river, South Branch Oconto river

8. Lincoln county — Prairie river

9. Marquette county - Mecan river

10. Oconto county — North Branch Oconto river, South Branch Oconto river

11. Pierce county — Rush river

12. Portage county - Tomorrow river

13. Richland county — Willow creek

14. St. Croix county - Willow river, Race Branch

15. Waushara county — Mecan river

(d) The following cold or warm water streams and rivers or portions thereof:

1g.	Ashland	Bad River	SEG 2: Outfall in Mellen at NE ¹ / ₄ SW ¹ / ₄ S6 T44N R2W to Bad River Indian Reservation Boundary
lr.	Ashland & Sawyer	East Fork Chip- pewa River	SEG 2: Ashland County Highway "N" to Confluence of Rocky Run Creek (Includes Glidden POTW)
1t.	Barron	Brill River	All–Class II Por- tion
2.	Crawford	Copper Creek	All
		Plum Creek	All
		Sugar Creek	From headwaters to T10N R6W S10
		Tainter Creek	From Vernon County Line to CTH B

Published under s. 35.93, Stats. Updated on the first day of each month. Entire code is always current. The Register date on each page

is the date the chapter was last published.

Published under s. 35.93, Wis. Stats., by the Legislative Reference Bureau.

DEPARTMENT OF NATURAL RESOURCES

NR 102.11

3.	Dane	Blue Mounds Branch	All			Hefty Cr., Center Branch	All
		Deer Creek	All			Liberty Creek	All
		Dunlap Creek	All			Norwegian Creek	All
		Elvers Creek	All			Richland Creek	All
		(Donn Creek	A 11			Ross Crossing	All
		Fryes Feeder				Sylvester Creek	All
		Creek				Spring Valley Creek	All
		Milum Creek	All			Ward Creek	All
		Putland Branch		13.	Green &	Allen Creek	Below Evansville
		Ruttand Dianen Rvan Creek			Rock		
		Schalphach Creek	All	14.	Iowa	Harker-Lee-Mar-	From headwaters
		Sixmile Creek	All			tin System	to T6N R2ES10
		Spring Creek	All	15.	Iron	Manitowish River	All
		(Lodi)		15m.	Iron & Ash-	Vaughn Creek	SEG 1: Origin to
4.	Dane, Sauk, Iowa, Grant	Wisconsin River	From below Prai- rie du Sac to Prai- rie du Chien		land		Bad River Indian Reservation Boundary
-	Richland, Crawford			16.	Jackson	Trempealeau River	From STH 95 at Hixton to CTHP at Taylor
5.	Dane & Green	Little Sugar River	Above New Glarus	17.	Jefferson & Rock	Allen Creek	All
		(Tipperary)	All	18	Kewaunee	Casco Creek	From T24N R24E
		Sugar River	All	10.	ite waanee	Cuseo Creek	S19 downstream
6.	Dunn	Sand Creek	From Chippewa County Line to				of Rock Ledge to Kewaunee River
7.	Eau Claire	Lowes Creek	mouth From Hwy 37 &	19.	La Crosse	Bostwick Creek	From headwaters to County Hwy
			85 upstream to headwaters			Coon Creek	All
8.	Fond du Lac	Feldner's Creek	From headwaters to Mischo's Mill- pond			Dutch Creek	From headwaters to Russian Coulee Road (section 8)
		Auburn Lake Creek (Lake Fif- teen Creek)	Entire Creek above & below Auburn Lake	20.	Lafayette	Galena River	From headwaters to Buncombe Road
9.	Forest	Armstrong Creek	All	21.	Langlade	East Br. Eau	From STH 64
		Middle Br. Pesh- tigo R.	All		Dunghude	Claire R.	upstream to fire- lane crossing in
		North Br. Peshtigo R.	All				SW1/4
		North Br. Popple R.	All			Hunting River	From Fitzgerald Dam Road down- stream to T33N
		West Br. Arm- strong Creek	Class II Portion	22	T · 1		R11E S1
10.	Grant	Doc Smith Branch	All	22.	Lincoln	River	to CTHJ to T33N
		Little Platte River	From Arthur				R8E
			Platte River			Silver Creek	All
11.	Grant &	Big Spring Branch	From Springhead	23.	Manitowoc	Branch River	All
12	Iowa Green	Burgy Creek	to Blue River 2 All All All		Monroe	Big Creek	From headwaters to Acorn Rd (S7)
•		Gill Creek				Farmers Valley	From headwaters
		Hefty Creek,				Creek & Tribs	to I-90 (S19)
		Mauth Duan i				Canan Caral	A 11

 Published under s. 35.93, Stats. Updated on the first day of each month. Entire code is always current. The Register date on each page

 is the date the chapter was last published.

 Register November 2010 No. 659

NR 102.11

WISCONSIN ADMINISTRATIVE CODE

25.	Oneida	Bearskin Creek	From Tomahawk River to Little Bearskin Lake			E. Branch Mill Creek	All
25m.	Oneida &	Wisconsin River	SEG 2: Hat Rap-			Happy Hollow Creek	All–Trib to Wil- low Creek
	Lincoln		ids Dam to Lin- coln County A			Higgins Creek	All–Trib to Mill Creek
			SEG 4: Grandfa-			Hood Hollow Creek	All–Trib to Mill Creek
26	D.	D' D'	of Alexander Lake			Jacquish Hollow Creek	All–Trib to Wil- low Creek
26.	Pierce	Cady Creek	From CTH P			Kepler Branch	All–Trib to Mill Creek
		Trimbelle River	All			Mill Creek	From headwaters to above Boaz
26b.	Polk	St. Croix River	From the northern boundary of the			Miller Branch	All–Trib to Mill Creek
			St. Croix Falls city limits to a distance one mile			Pine Valley Creek	All–Trib to Mill Creek
			below the STH 243 bridge at			Ryan Hollow	All–Trib to West Branch Mill Creek
26c.	Polk &	Clam River	Osceola SEG 3: Section			Wheat Hollow Creek	All
	Burnett		Line @ T39N R16W S21/22 to			W. Branch Mill Creek	All
			River Flowage	28.	Rock	Bass Creek	All
			SEG 4: Outlet of Clam River Flow-			East Fork Rac- coon Cr.	All
			age to Confluence			Little Turtle Creek	All
			with St. Croix			Raccoon Creek	All
26g.	Price	North Fork Jump	SEG 1: Origin			Spring Brook (T2N R14E S27)	All
		Kiver	(outlet of Cran- berry Lake) to			Turtle Creek	All
			Inlet of Spring Creek Flowage			Unnamed Creek T2N R14E S31	All
			SEG 2: Outlet of Spring Creek	29.	Rusk	Big Weirgor Creek	All-Class III Por- tion
			Flowage to Con- fluence with South Fork Jump River			Main Creek	Rusk County Highway P to Inlet of Holcombe Flowage
26n.	Price, Rusk & Taylor	Jump River	SEG 1: Conflu- ence of the North Fork Jump River and South Fork Jump River to the			Soft Maple Creek	SEG 2: Rusk County Highway "F" to Confluence with Chippewa River
26r.	Price, Saw- yer, Rusk	Flambeau River	River SEG 2: Crowley Dam to Inlet of	30.	Rusk, Tay- lor & Chip- pewa	Jump River	From Village of Jump River down- stream to Hol- combe Flowage
26w.	Price & Taylor	South Fork Jump River	Big Falls Flowage Origin to Conflu- ence with North	31.	Sauk	Beaver Creek (Trib to Dell Creek)	All
27	Richland	Babb Hollow	Fork Jump River			Camels Creek	All
		Hanzel Crook	Creek			(Trib to Dell Creek)	
		(Hansell)	All–Trib to Melancthon Cr.		<i>a</i>	Dell Creek	All
		Melancthon Creek	Class II Section	31m.	Sawyer	Couderay River	SEG 2: Dam at Grimh Flowage to
		Coulter Hollow Creek	All–Trib to Mill Creek				Confluence with Chippewa River

Published under s. 35.93, Stats. Updated on the first day of each month. Entire code is always current. The Register date on each page

DEPARTMENT OF NATURAL RESOURCES

32.	Shawano	Kroenke Creek	Class II Portion	40.	Waukesha	Genesee Creek	Above STH 59				
		Red River	From Lower Red Lake Dam to Wolf River			Mukwonago River	From Eagle Springs Lake to Upper Phantom Lake				
		West Br. Red River	Class II Portion			Oconomowoc River	From below North Lake to Okauchee				
33.	Sheboygan	Ben Nutt Creek	Class II Portion to				Lake				
24		A 1 D'	Creek	41.	Waupaca	Blake Brook & Branches	Class II Portion				
34.	St. Croix	Apple River	below CTH I to Mouth			Little Wolf River	From junction with Wolf River upstream to Man-				
		Cady Creek	All				awa Dam				
		Willow River	Extend Class II Portion into Delta	40	W /	Waupaca River	Class II portion				
25			in Lake Mallilieu	42.	Waupaca, Outagamie, & Shawano	Embarrass River	rom Wolf River upstream to dam at Pella				
35.	St. Croix & Pierce	St. Croix River	ary of Hudson City limits to the river mouth in	43.	Waushara	Lower Pine River	From below Wild Rose Mill pond to dam at Poy Sippi				
25m	Taulor &	Silver Creek	Fielde CO.	(2)	The waters ide	entified in sub. (1) m	ay not be lowered in				
55111.	Price	Sliver Creek	Sanitary District Outfall to Conflu-	(3) Surface waters, or portions thereof, may be added to, or deleted from, the exceptional resource waters designation through							
			ence with South Fork Jump River	the rul and s.	e making proce NR 2.03.	ess under the provision	ons of ch. 227, Stats.,				
36.	Trempeal- eau	Buffalo River	From Hwy 53 to Strum Pond	History: Cr. Register, February, 1989, No. 398, eff. 3–1–89; cr. (1) (c), Register, July, 1989, No. 403, eff. 8–1–89; cr. (1) (d), Register, May, 1993, No. 449, eff. 6–1–93; CR 05–105; renum. (1) (d) 1. to be 1t., cr. 1g., 1r., 15m., 25m., 26c., 26n.							
37.	Vernon	Bishop Branch	All	26r., 26w 12-1-06	v., 31m., 35m., and ; CR 09–123: am. (vember 2006 No. 611, eff. , 27., 33., 34., 37., (d) 5., 8.,					
		Cheyenne Valley	All	15., 17., 1	28., 34., 39. and 42.,	cr. (1) (d) 26b. Register July	2010 No. 655, eff. 8–1–10.				
		Creek		NR 102.12 Great Lakes system. (1) The Great Lakes							
		Coon Creek	From La Crosse county line to Chaseburg	system includes all the surface waters within the drainage basin of the Great Lakes.							
		Frohock Valley Creek	All	(2) tent wi to be p	th chs. NR 105 protected from	chs. NR 105 and 106, the waters identified in sub. (1) are betted from the impacts of persistent, bioaccumulating ostances by avoiding or limiting to the maximum extent the increases in these substances					
		Hornby Creek	All	toxic s	ubstances by a						
		Reads Creek	All	(3)	The waters of t	the Lake Superior basi	n shall be managed to				
		Tainter Creek	All	preven	t any new or in	creased discharges of	f the following pollu-				
38.	Vilas	Manitowish River	From Rest Lake Dam downstream to Iron County line	tants: chlorol PCB's. increas the app	DDT, DDE and benzene, 2,3,7, For purpose sed discharges of plicant certifies	d metabolites, chlorda 8 TCDD, octachloro es of administering c of these pollutants shal s at time of applicat	ne, toxaphene, hexa- styrene, mercury and ch. NR 207, new or Il be prohibited unless ion, that the new or				
38m.	Vilas & Oneida	Wisconsin River	SEG 2: State Highway 70 to Inlet at Rainbow Flowage (Oneida County Line)	increased discharge is necessary after utilization of best technol- ogy in process or control using waste minimization, pollution pre- vention, municipal pretreatment programs, material substitution or other means of commercially available technologies which have demonstrated canability for similar applications							
			SEG 3: Outlet of Rainbow Flowage (Oneida County	Histor (2), Regi 2006 No	ry: Cr. Register, Fe ister, August, 1997, 607, eff. 8–1–06.	bruary, 1989, No. 398, eff. No. 500, eff. 9–1–97; CR 0	3–1–89; r. and recr. (1), am. 5–089: cr. (3) Register July				
			Highway "D" to Inlet of Rhine- lander Flowage (T37N R8E S8 SE¼NE¼)	NR 102.13 Fish and aquatic life waters. All surface waters not included in s. NR 102.05 (1) (b) 1., 2., 3. or 5. are fish and aquatic life waters. History: Cr. Register, February, 1989, No. 398, eff. 3–1–89.							
39.	Washington & Fond du Lac	E. Branch Mil- waukee R.	From Long Lake outlet to STH 28	NR centrat impart	102.14 Tast ions, substance undesirable ta	te and odor criteria es may not be toxic ste or odor to water	1. (1) At certain conto humans, but may or aquatic organisms				

Published under s. 35.93, Stats. Updated on the first day of each month. Entire code is always current. The Register date on each page is the date the chapter was last published. Register November 2010 No. 659 ingested by humans. The taste and odor criterion is derived to prevent substances from concentrating in surface waters or accumulating in aquatic organisms to a level which results in undesirable tastes or odors to human consumers.

(2) The taste and odor criterion is derived as follows:

(a) For substances which impart tastes and odors to waters, the taste and odor criterion shall equal that threshold concentration (TC_w) below which objectionable tastes or odors to human consumers do not occur. Threshold concentrations for substances imparting tastes and odors to water are listed in Table 1.

Table 1 Threshold Concentrations (TC_w) for Substances Causing Taste and Odor in Water

Substance	Threshold Concentration (ug/L)1
Acenaphthene	20
Chlorobenzene	20
2-Chlorophenol	0.1
3-Chlorophenol	0.1
4-Chlorophenol	0.1
Copper	1000
2,3-Dichlorophenol	0.04
2,4-Dichlorophenol	0.3
2,5-Dichlorophenol	0.5
2,6-Dichlorophenol	0.2
3,4-Dichlorophenol	0.3
2,4–Dimethylphenol	400
Hexachlorocyclopentadiene	1
2-Methyl-4-Chlorophenol	1800
3-Methyl-4-Chlorophenol	3000
3-Methyl-6-Chlorophenol	20
Nitrobenzene	30
Pentachlorophenol	30
Phenol	300
2,3,4,6–Tetrachlorophenol	1
2,4,5–Trichlorophenol	1
2,4,6-Trichlorophenol	2
Zinc	5000

¹ A threshold concentration expressed in micrograms per liter (ug/L) can be converted to milligrams per liter (mg/L) by dividing the threshold concentration by 1000.

(b) For substances which impart tastes or odors to aquatic organisms, the taste and odor criterion shall be calculated as follows:

TOC	=	TC^1
		BAF

TOC

Where:

 Taste and odor criterion in milligrams per liter (mg/L).

- TC = Threshold concentration in milligrams of substance per kilogram of wet tissue weight (mg/ kg) of the aquatic organism being consumed below which undesirable taste and odor is not detectable to human consumers as derived in par. (d).
- BAF = Aquatic life bioaccumulation factor with units of liter per kilogram (L/kg) as derived in s. NR 105.10.

(c) The lower of the taste and odor criteria derived as specified in pars. (a) and (b) is applicable to surface waters classified as public water supplies. The taste and odor criteria derived as specified in par. (b) are applicable to cold water and warm water sport fish communities.

(d) Threshold concentrations for substances imparting tastes or odors to water (TC_w) other than those listed in Table 1 and threshold concentrations for substances imparting tastes or odors to aquatic organisms (TC_f) shall be selected by the department using its best professional judgment.

History: Cr. Register, February, 1989, No. 398, eff. 3–1–89; am. (2) (b) and (c), Register, August, 1997, No. 500, eff. 9–1–97.

Subchapter II — Water Quality Standards For Temperature

NR 102.20 Purpose. The purpose of this subchapter is to establish water quality standards for temperature pursuant to s. 281.15 (1), Stats. Water quality standards for temperature shall protect fish and other aquatic life from mortality, immobilization, loss of equilibrium, impaired growth, adverse reproductive effects, and other sub–lethal effects.

History: CR 07-111: cr. Register September 2010 No. 657, eff. 10-1-10.

NR 102.22 Definitions. In this subchapter, the following definitions are applicable to terms used:

(1) "Acute effects" means any effect resulting in death or immobilization. For temperature, the acute criteria of this subchapter are based on Upper Incipient Lethal Temperature (UILT) values that are not representative of immediate lethality.

(2) "cfs" means cubic feet per second, usually pertaining to stream or effluent flow.

(3) "Cold shock" means exposure of aquatic organisms to a rapid decrease in temperature and a sustained exposure to low temperature that induces abnormal behavioral or physiological performance and may lead to death.

(4) "Daily maximum temperature" means the highest allowed water temperature for a calendar day, outside a mixing zone allowed in this subchapter.

(5) "Great Lakes" means the open Wisconsin waters of Lake Superior, Lake Michigan, Green Bay and Chequamegon Bay, as well as adjoining open waters that exhibit characteristics of Lake Superior, Lake Michigan, Green Bay or Chequamegon Bay, or in other ways are determined by the department to be equivalent to these waters.

(6) "Maximum weekly average temperature" means the highest allowed arithmetic mean of all daily maximum temperatures during a calendar week, outside mixing zone allowed in this subchapter.

(7) "mgd" means million gallons per day.

(8) "Sub-lethal effects" means effects resulting in inadequate gonad development, gamete production and viability, spawning or growth.

History: CR 07-111: cr. Register September 2010 No. 657, eff. 10-1-10.

NR 102.23 Categories of standards applicable to temperature. The department shall establish water quality standards for temperature to protect the following:

(1) Public health and welfare uses, as established in s. NR 102.04 (7) and (8).

(2) Fish and other aquatic life uses as established in s. NR 102.04 (3). For exclusive purpose of the application of water quality standards for temperature, the warm water sport fish and warm water forage fish communities, as defined in s. NR 102.04 (3) (b) and (c), are treated together as warm water communities.

Published under s. 35.93, Stats. Updated on the first day of each month. Entire code is always current. The Register date on each page er 2010 No. 659 is the date the chapter was last published.

(3) Great Lakes communities as defined in s. NR 102.22 (6). This use exists only for the regulation of discharges of heat. History: CR 07-111: cr. Register September 2010 No. 657, eff. 10-1-10.

NR 102.24 General water quality criteria for temperature. (1) There may be no temperature changes that may adversely affect aquatic life.

(2) Natural daily and seasonal temperature fluctuations shall be maintained.

History: CR 07-111: cr. Register September 2010 No. 657, eff. 10-1-10.

NR 102.245 Temperature criteria for limited aquatic life communities. (1) For the purposes of temperature criteria, all surface waters classified as diffused surface waters, wetlands and wastewater effluent channels, as defined in s. NR 104.02 (1), shall be characterized as limited aquatic life communities.

(2) The department may, as appropriate, characterize other surface waters not identified in sub. (1) as limited aquatic life communities.

(3) The temperature in waters classified as limited aquatic life shall be restricted as follows:

(a) Temperatures at any point in waters classified as wastewater effluent channels may not exceed 120°F.

(b) Temperatures at any point in waters classified as wetlands shall not exceed the standards in ch. NR 103.

(c) Temperatures at any point in waters not identified in par. (a) or (b) may not exceed 86°F. Additionally, all conditions of ch. NR 103 shall be met.

Note: The department recognizes there are legitimate concerns that not all wetlands and ephemeral streams are the biological equivalents of other limited aquatic life waters, and is in the process of re-evaluating the wetland and ephemeral stream

classifications to determine if and when full fish and aquatic life conditions should be applied.

History: CR 07-111: cr. Register September 2010 No. 657, eff. 10-1-10.

NR 102.25 Ambient temperatures and water guality criteria for the protection of fish and other aquatic life. (1) GENERAL. In the absence of site-specific ambient temperature data or water quality criteria as determine in s. NR 102.26 or 102.27, respectively, the applicable ambient temperatures, sublethal water quality criteria, and acute water quality criteria shall be as specified in subs. (2) to (5). For determinations made in subs. (2) to (5), all of the following conditions shall apply:

(a) The ambient temperature, sub-lethal water quality criterion, and acute water quality criterion specified for any calendar month shall be applied simultaneously to establish the protection needed for each identified fish and other aquatic life use.

(b) Sub-lethal water quality criteria are to be applied as maximum weekly average temperatures.

(c) Acute water quality criteria are to be applied as daily maximum temperatures.

(d) Water quality criteria for temperature shall be applied in accordance with the mixing zone provisions of s. NR 102.05 (3).

(e) Final acute and sub-lethal water quality criteria for temperature specified in or developed pursuant to ss. NR 102.24 to 102.26 shall not be exceeded at any point outside the mixing zone. Additionally, site-specific mixing zone studies may be required when deemed appropriate by the department.

(2) NON-SPECIFIC WATERS. The values listed in Table 2 shall be the applicable ambient temperatures, sub-lethal and acute water quality criteria for temperature for the protection of fish and aquatic life unless other values specified in subs. (3) to (5) are applicable or approved by the department pursuant to s. NR 102.26 or 102.27.

(All values are expressed as degrees Fahrenheit)												
	Cold ⁴			Wa	rm — La	rge ⁵	Warm — Small ⁶			LFF ⁷		
Month	Ta ¹	SL ²	A ³	Та	SL	А	Та	SL	Α	Та	SL	Α
JAN	35	47	68	33	49	76	33	49	76	37	54	78
FEB	36	47	68	33	50	76	34	50	76	39	54	79
MAR	39	51	69	36	52	76	38	52	77	43	57	80
APR	47	57	70	46	55	79	48	55	79	50	63	81
MAY	56	63	72	60	65	82	58	65	82	59	70	84
JUN	62	67	72	71	75	85	66	76	84	64	77	85
JUL	64	67	73	75	80	86	69	81	85	69	81	86
AUG	63	65	73	74	79	86	67	81	84	68	79	86
SEP	57	60	72	65	72	84	60	73	82	63	73	85
OCT	49	53	70	52	61	80	50	61	80	55	63	83
NOV	41	48	69	39	50	77	40	49	77	46	54	80
DEC	37	47	69	33	49	76	35	49	76	40	54	79

Table 2 Ambient Temperatures and Water Quality Criteria for Temperature for Non-Specific Waters

1 Ta = ambient temperature

2 SL = sub-lethal criteria

3 A = acute criteria

Cold = waters with a fish and aquatic life use designation of "cold water community"

Warm - Large = waters with a fish and aquatic life use designation of "warm water sport fish community" or "warm water forage fish community" and 5 unidirectional 7Q10 flows ≥ 200 cfs (129 mgd)

Warm - Small = waters with a fish and aquatic life use designation of "warm sport fish community" or "warm water forage fish community "and uni-6 directional 7Q10 flows < 200 cfs (129 mgd)

7 LFF = waters with a fish and aquatic life use designation of "limited forage fish community"

NR 102.25

(3) SPECIFIC LARGE RIVERS. The values listed in Table 3 shall be the applicable ambient temperatures, sub–lethal and acute water quality criteria for temperature for the protection of fish and aquatic life for the identified water segments unless other values are approved by the department pursuant to s. NR 102.26 or 102.27.

Table 3 Ambient Temperatures and Water Quality Criteria for Temperature for Specific Large Rivers

(All values are expressed as degrees Fahrenheit)

	Mississippi River ⁴		Rock River ⁵		Upper Wisconsin River ⁶		Lower Wisconsin River ⁷			Lower Fox River ⁸					
Month	Ta ¹	SL ²	A ³	Та	SL	Α	Та	SL	Α	Та	SL	Α	Та	SL	Α
JAN	32	49	75	33	49	76	33	49	76	32	49	75	35	49	76
FEB	33	50	76	35	50	76	33	50	76	32	50	75	35	50	76
MAR	36	52	76	38	52	77	35	52	76	37	52	77	38	52	77
APR	47	55	79	49	55	79	44	55	78	48	55	79	50	55	80
MAY	60	65	82	64	65	84	60	65	82	61	65	83	62	65	83
JUN	72	75	85	71	75	85	70	75	85	71	75	85	73	76	85
JUL	76	80	86	74	79	86	75	80	86	75	80	86	77	81	87
AUG	76	79	86	73	79	85	73	79	85	74	79	86	76	80	86
SEP	67	73	84	66	72	84	65	72	84	67	72	84	68	73	85
OCT	54	61	81	54	61	81	51	61	80	53	61	80	53	61	80
NOV	40	50	77	40	50	77	39	50	77	40	50	77	42	50	78
DEC	33	49	76	34	49	76	33	49	76	33	49	76	35	49	76

1 Ta = ambient temperature

2 SL = sub-lethal criteria

3 A = acute criteria

4 Mississippi River = applies to any portion of Wisconsin's Mississippi River reach

5 Rock River = applies to waters downstream of Lake Koshkonong

6 Upper Wisconsin River = applies to waters upstream of Petenwell Dam

7 Lower Wisconsin River = applies to waters downstream of Petenwell Dam to the confluence with the Mississippi River

8 Lower Fox River = applies to waters downstream of the Lake Winnebago outlet

(4) INLAND LAKES AND IMPOUNDMENTS. The values listed in Table 4 shall be the applicable ambient temperatures, sub-lethal and acute water quality criteria for temperature for the protection of fish and aquatic life for inland lakes and impoundments unless other values are approved by the department pursuant to s. NR 102.26 or 102.27.

 Table 4

 Ambient Temperatures and Water Quality Criteria for Temperature for Inland Lakes and Impoundments (All values are expressed as degrees Fahrenheit)

		Northern ⁴				
Month	Ta ¹	SL ²	A ³	Та	SL	Α
JAN	35	49	76	35	49	77
FEB	34	52	76	39	52	78
MAR	35	55	76	41	55	78
APR	41	60	78	49	60	80
MAY	55	67	81	58	68	82
JUN	67	75	85	70	75	86
JUL	72	79	86	77	80	87
AUG	71	79	86	76	80	87
SEP	63	72	84	67	73	85
OCT	52	61	80	54	61	81
NOV	43	50	78	42	50	78
DEC	35	49	76	35	49	77

1 Ta = ambient temperature

2 SL = sub-lethal criteria

3 A = acute criteria

4 Northern = applicable for those lakes and impoundments north of State Highway 10

5 Southern = applicable for those lakes and impoundments south of State Highway 10

(5) GREAT LAKES WATERS. The values listed in Table 5 shall be the applicable ambient temperatures, sub–lethal and acute water quality criteria for the protection of fish and aquatic life for Great Lakes waters identified in s. NR 102.22 (5) unless other values are approved by the department pursuant to s. NR 102.26 or 102.27.

DEPARTMENT OF NATURAL RESOURCES

Table 5
Ambient Temperatures and Water Quality Criteria for Temperature for Great Lakes Waters of Wisconsin
(All values are expressed as degrees Fahrenheit)

	Green Bay					Lake Michigan												
	Southern ⁴			Northern ⁵			Northern ⁶		Southern ⁷			Lake Superior ⁸			Chequamegon Bay ⁹			
Month	Ta ¹	SL ²	A ³	Та	SL	Α	Та	SL	Α	Та	SL	Α	Та	SL	Α	Та	SL	Α
JAN	35	49	75	35	43	69	34	43	69	35	43	69	35	41	69	35	41	69
FEB	35	52	75	35	47	69	33	47	69	34	46	69	34	46	69	35	46	69
MAR	41	54	77	36	52	70	35	52	69	37	52	70	34	51	69	35	51	69
APR	47	58	79	40	57	71	39	58	70	43	59	70	35	57	69	38	57	69
MAY	56	64	81	48	63	72	44	64	71	48	65	72	41	63	70	50	63	72
JUN	66	70	83	57	68	75	48	69	72	54	70	73	49	69	72	59	69	74
JUL	70	75	83	62	71	77	53	71	73	59	71	74	55	72	73	62	72	75
AUG	70	75	83	64	71	78	56	69	73	63	70	76	57	71	73	64	71	76
SEP	65	70	83	61	66	77	53	64	73	60	64	74	57	64	73	60	66	74
OCT	54	60	80	54	58	74	48	55	72	53	57	73	50	55	72	49	57	72
NOV	39	49	76	44	49	71	42	47	70	45	49	71	43	45	70	39	48	70
DEC	37	46	75	37	44	70	36	44	69	38	44	70	38	42	69	35	43	69

1 Ta = ambient temperature

2 SL = sub-lethal criteria

3 A = acute criteria

4 Southern Green Bay = waters south of the Brown County line to the Fox River mouth

5 Northern Green Bay = waters north of the Brown County line to the northernmost point on Washington Island

6 Northern Lake Michigan = waters north of the Milwaukee River mouth (downtown Milwaukee)

7 Southern Lake Michigan = waters south of the Milwaukee River mouth (downtown Milwaukee)

8 Lake Superior = waters in Lake Superior except those in Chequamegon Bay

9 Chequamegon Bay = waters within the region enclosed by Chequamegon Point and a straight line west to the mainland

History: CR 07-111: cr. Register September 2010 No. 657, eff. 10-1-10.

NR 102.26 Site-specific ambient temperatures. (1) DEVELOPMENT OF SITE-SPECIFIC AMBIENT TEMPERATURES. An owner or operator of a facility with a discharge subject to regulation under this chapter may submit a request to the department for the determination of a site-specific ambient temperature. The department may approve, disapprove or approve with modifications the request for the site-specific ambient temperature. The request for site-specific ambient temperatures shall include all of the following:

(a) A demonstration that the data used to derive the ambient temperatures in s. NR 102.25 do not apply to the specific water segment or body in question.

(b) Site-specific water temperature that represents the ambient temperature of the site. For purposes of this paragraph, data must be:

1. Collected daily using a continuous recorder or similar device that takes measurements at least hourly, except as follows:

a. Monthly data sets may be missing no more than 10 days of temperature data for the months of December through February,

b. Monthly data sets may be missing no more than 5 days of temperature data for the months of March through November.

2. Collected for each month in which the request for site-specific ambient temperatures is requested,

3. Collected at any time since October 1987,

4. Collected for at least 2 consecutive years.

(c) Calculated daily average temperatures from the data from par. (b).

(d) Calculated monthly average temperatures from the daily average temperatures in par. (c) for each individual month that data has been collected. Alternatively, calculated monthly average temperatures directly from the data from par. (b) for each individual month.

(e) All individual monthly averages organized by month.

(f) A determination of the monthly site-specific ambient temperatures by calculating the geometric mean of all monthly averages for each given month.

(g) Alternative methods for developing site-specific ambient temperatures, if the department approves the method as representative of ambient temperatures as those in pars. (a) to (d).

(2) Use of site-specific ambient temperatures to estab-LISH ACUTE CRITERIA. Once site-specific ambient temperatures have been approved by the department in accordance with sub. (1), the acute water quality criteria listed in Table 6 will be applicable for the protection of fish and other aquatic life.

(3) Use of site-specific ambient temperatures to estab-LISH SUB-LETHAL CRITERIA. Once site-specific ambient temperatures have been approved by the department in accordance with sub. (1), the sub-lethal water quality criteria applicable for the protection of fish and other aquatic life shall be calculated as follows:

(a) Use Table 7 to determine the appropriate sub-lethal criteria for the fish and other aquatic life use.

(b) Modify the sub-lethal criteria as follows:

1. If a sub-lethal criterion from par. (a) is less than the sitespecific ambient temperature from sub. (1) for a given month, increase the sub-lethal criterion to be equal with the site-specific ambient temperature.

2. If a sub-lethal criterion from par. (a) is greater than an acute criterion for a given month from sub. (2) decrease the sub-lethal criterion to be equal with the acute criterion.

(c) Perform a fifth order polynomial regression of the 12 monthly sub-lethal criteria resulting from par. (b). Using the resulting equation of the regression, calculate the final sub-lethal criteria for each month by replacing the "x" variables in the equation with a numeric representation for each month, where January "x" = 1, for February "x" = 2, ... and for December "x" = 12.

(d) The final sub-lethal criteria from par. (c) shall be used in combination with the site-specific ambient temperatures developed in sub. (1) and the acute criteria determined in sub. (2).

Published under s. 35.93, Stats. Updated on the first day of each month. Entire code is always current. The Register date on each page is the date the chapter was last published.

Table 6								
Acute Criteria Across All Ambient Temperatures								
(All values are expressed as degrees Fahrenheit)								

Inland Waters							Great Lakes Waters						
1 Ta	2 Cold	3 Warm	4 LFF	5 N Lake	6 S Lake	7 SGB	8 NGB	9 NLKMI	10 SLKMI	11 LKSUP	12 CB		
32	68	75	77	75	76	74	69	69	69	68	68		
33	68	76	77	76	76	74	69	69	69	69	69		
34	68	76	77	76	76	75	69	69	69	69	69		
35	68	76	77	76	77	75	69	69	69	69	69		
36	68	76	78	76	77	75	70	69	69	69	69		
37	69	77	78	77	77	75	70	70	70	69	69		
38	69	77	78	77	77	76	70	70	70	69	69		
39	69	77	79	77	78	76	71	70	70	70	70		
40	69	77	79	77	78	76	71	70	70	70	70		
41	69	78	79	78	78	77	71	70	70	70	70		
42	69	78	79	78	78	77	71	70	70	70	70		
43	69	78	80	78	78	77	71	70	70	70	70		
44	70	78	80	78	79	78	71	71	71	71	71		
45	70	79	80	79	79	78	71	71	71	71	71		
46	70	79	80	79	79	78	72	72	72	71	71		
47	70	79	81	79	80	79	72	72	72	71	/1		
48	70	79	81	79	80	79	72	72	72	72	72		
49	70	/9	81	80	80	79	73	72	72	72	72		
50	70	80	81	80	80	79	73	73	75	72	72		
51	71	80	82	80	81	80	/3 72	73	73 72	72	72		
52	/1	80	82	80	81	80	75	73	75	72	72		
53 54	71	80	82	81 01	81	80	74	73	73 72	72	72		
54	71	01	02 92	01	01 82	00 01	74	73	75	73	75		
55 56	71	01 91	65 82	01 91	82 82	01 81	74	73	73	73	73		
57	72	82	83	82	82	81	75	73	73	73	73		
58	72	82	83	82	82	81	75	73	73	73	73		
50 59	72	82	84	83	82	81	75	74 74	74 74	73 74	73 74		
60	72	82	84	83	83	82	76	74	74	74	74		
61	72	83	84	83	83	82	70	75	75	74	74		
62	72	83	84	83	84	82	77	75	75	75	75		
63	73	83	85	84	84	82	78	76	76	75	75		
64	73	84	85	84	85	82	78	77	77	76	76		
65	73	84	85	84	85	83	78	77	77	76	76		
66	73	84	85	85	85	83	79	78	78	77	77		
67	74	84	86	85	85	83	79	78	78	77	77		
68	74	85	86	85	85	83	80	79	79	78	78		
69	74	85	86	85	86	83	80	79	79	78	78		
70	74	85	86	86	86	83	81	80	80	79	79		
71	74	85	87	86	86	84	81	81	81	79	79		
72	75	85	87	86	86	84	82	81	81	80	80		
73	75	85	87	86	86	84	82	82	82	80	80		
74	75	86	87	86	87	84	82	82	82	81	81		
75	75	86	88	87	87	85	83	83	83	81	81		
76		86	88	87	87	85	83	83	83	82	82		
77		87	88	87	87	85	84	84	84	83	83		
78		87	88	87	88	86	84	84	84	83	83		
79		87	89	88	88	86	84	84	84	83	83		
80		87	89	88	88	86	84	84	84	83	83		
81		88	89	88	88	86	84	84	84	83	83		

Published under s. 35.93, Stats. Updated on the first day of each month. Entire code is always current. The Register date on each page er 2010 No. 659 is the date the chapter was last published. 16-11

DEPARTMENT OF NATURAL RESOURCES

NR 102.26

		Iı	nland Wa	ters		Great Lakes Waters						
1	2	3	4	5	6	7	8	9	10	11	12	
Та	Cold	Warm	LFF	N Lake	S Lake	SGB	NGB	NLKMI	SLKMI	LKSUP	СВ	
82		88	89	88	89	87	84	84	84	84	84	
83		88	90	89	89	87	84	84	84	84	84	
84		88	90	89	89	88	85	85	85	84	84	
85		89	90	89	89	88	85	85	85			
86		89	90	89	90	89						
87		89	91	90	90	89						
88		90	91	90	90	89						
89		90	91	90	91	89						
90		91	91	91	91							
91		91	92	91	92							
92			92		92							

1 Ta = ambient temperature

2 Cold = waters with a fish and other aquatic life use designation of "cold water community"

3 Warm = waters with a fish and other aquatic life use designation of "warm water sport fish community" or "warm water forage fish community"

4 LFF = waters with a designation of "limited forage fish community"

5 N Lake = applicable for those lakes north of State Highway 10

6 S Lake = applicable for those lakes south of State Highway 10

7 SGB = Green Bay waters south of the Brown County line to the Fox River mouth

8 NGB = Green Bay waters north of the Brown County line to the northernmost point on Washington Island

9 NLKMI = Lake Michigan waters north of the Milwaukee River mouth (downtown Milwaukee)

10 SLKMI = Lake Michigan waters south of the Milwaukee River mouth (downtown Milwaukee)

11 LKSUP = waters in Lake Superior except those in Chequamegon Bay

12 CB = Chequamegon Bay waters within the region enclosed by Chequamegon Point and a straight line west to the mainland

Table 7

Raw Monthly Sub-Lethal Criteria for Use In Determining Final Sub-Lethal Criteria

with Site–Specific Ambient Temperatures (All values are expressed as degrees Fahrenheit)

Month	С	W-L	W-S	LFF	NIL	SIL	MR	RR	UWR
January	47	50	50	54	50	50	50	50	50
February	45	50	50	54	50	50	50	50	50
March	53	54	54	54	54	54	54	54	54
April	59	65	65	64	63	64	65	65	65
May	59	70	70	75	70	70	70	70	70
June	67	72	72	75	72	72	72	72	72
July	68	74	74	75	75	74	74	74	74
August	68	78	78	77	77	77	78	78	78
September	52	87	87	92	87	87	87	87	87
October	52	54	54	54	54	54	54	54	54
November	50	50	50	54	50	50	50	50	50
December	46	50	50	54	50	50	50	50	50
				1		l		1	_
Month	LWR	LFR	SGB	NGB	SLM	NLM	LS	СВ	
January	50	50	50	44	44	44	42	42	-

							. –	-
January	50	50	50	44	44	44	42	42
February	50	50	50	43	43	43	43	43
March	54	54	54	54	52	54	52	52
April	65	65	60	59	61	60	58	58
May	70	70	66	64	67	65	65	65
June	72	72	70	67	68	67	67	67
July	74	74	70	68	68	68	69	69
August	78	78	71	67	67	67	69	69
September	87	87	83	79	79	79	79	79
October	54	54	50	50	50	50	45	54
November	50	50	47	47	47	47	44	46
December	50	50	47	45	45	45	43	44

C = Cold = waters with a fish and other aquatic life use designation of "cold water community"

W-L = Warm -Large = waters with a fish and other aquatic life use designation of "warm water sport fish community" or "warm water forage fish community" and unidirectional 7Q10 flows ≥ 200 cfs (129 mgd)

 Published under s. 35.93, Stats. Updated on the first day of each month. Entire code is always current. The Register date on each page

 is the date the chapter was last published.

 Register November 2010 No. 659

- W-S =Warm - Small = waters with a fish and other aquatic life use designation of "warm water sport fish community" or "warm water forage fish community" and unidirectional 7Q10 flows < 200 cfs (129 mgd)
- LFF = waters with a designation of "limited forage fish community"
- NIL = Northern Inland Lakes = applicable for those lakes north of State Highway 10
- SIL = Southern Inland Lakes = applicable for those lakes south of State Highway 10
- MR =Mississippi River = applies to any portion of Wisconsin's Mississippi River reach
- Rock River = applies to waters downstream of Lake Koshkonong RR =
- UWR =Upper Wisconsin River = applies to waters upstream of Petenwell Dam
- LWR = Lower Wisconsin River = applies to waters downstream of Petenwell Dam to the confluence with the Mississippi River
- LFR =Lower Fox River = applies to waters downstream of the Lake Winnebago outlet
- SGB = Green Bay waters south of the Brown County line to the Fox River mouth
- NGB = Green Bay waters north of the Brown County line to the northernmost point on Washington Island
- SLM =Lake Michigan waters south of the Milwaukee River mouth (downtown Milwaukee)
- NLM = Lake Michigan waters north of the Milwaukee River mouth (downtown Milwaukee)
- Lake Superior = waters in Lake Superior except those in Chequamegon Bay LS =
- CB = Chequamegon Bay = waters within the region enclosed by Chequamegon Point and a straight line west to the mainland

History: CR 07-111: cr. Register September 2010 No. 657, eff. 10-1-10; renumbering of (1) (b) 1. a. and b. made under s. 13.92 (4) (b) 1., Stats., Register September 2010 No. 657

NR 102.27 Site-specific water quality criteria. (1) GENERAL. A water quality criterion developed pursuant to this subchapter may be modified by the department for a particular surface water segment or waterbody. The site-specific water quality criterion shall only be applicable to the identified surface water segment or body. The development of a site-specific water quality criterion shall include all of the following:

(a) Information showing data used to derive the water quality criterion do not apply to the specific water segment or body.

(b) Consideration of the guidance provided in Chapter 3.7 of the Water Quality Standards Handbook, Second Edition, U.S. EPA, 8/15/1994.

(c) Information showing the site-specific water quality criterion is consistent with the guidelines provided in sub. (2).

(d) Any additional information necessary to derive site-specific water quality criterion.

Note: Site-specific water quality criteria are subject to U.S. Environmental Protection Agency approval under federal regulations.

(2) SITE-SPECIFIC WATER QUALITY CRITERIA DEVELOPMENT. (a) The department may promulgate site-specific water quality criteria for temperature when it determines that the data used to derive the water quality criteria published in this subchapter do not apply to the specific water segment or body in question. In making the determination, the same approach used to develop the water quality criteria in s. NR 102.25 may be used to develop site-specific water quality criteria by recalculating the water quality criteria based upon the actual species that are associated with the specific site.

(b) Alternative methods for developing site-specific water quality criteria may be used if it is determined that those alternative methods will protect against sub-lethal and acute impacts in the fish and aquatic life community of a specific site.

(c) A water quality criterion developed via alternative methods shall be reviewed by the department and shall be adopted as a rule under this chapter before it can be applied on a site-specific basis.

(3) Any water quality criterion modified for site-specific conditions shall be promulgated by the department and approved by the U.S. Environmental Protection Agency before it is applied on a site-specific basis.

History: CR 07-111: cr. Register September 2010 No. 657, eff. 10-1-10.

NR 102.28 Cold shock standard. Water temperatures of discharges shall be controlled in a manner as to protect fish and aquatic life uses from the deleterious effects of cold shock.

History: CR 07-111: cr. Register September 2010 No. 657, eff. 10-1-10.

NR 102.29 Rate of temperature change standard. Temperature of a water of the state or a discharge to a water of the state may not be artificially raised or lowered at such a rate that it causes detrimental health or reproductive effects to fish or aquatic life of the water of the state.

History: CR 07-111: cr. Register September 2010 No. 657, eff. 10-1-10.

NR 102.30 Variances to water quality standards for temperature. The provisions of ss. 283.15 and 283.17, Stats., are applicable to the water quality standards in this subchapter. History: CR 07-111: cr. Register September 2010 No. 657, eff. 10-1-10.